如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D在邊AC上,點(diǎn)E、F在邊AB上,精英家教網(wǎng)點(diǎn)G在邊BC上.
(1)求證:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的邊長.
分析:(1)要證明AE=BF,只要證明三角形BGF和三角形ADE全等即可;
(2)直角三角形BFG中,∠B=∠=45°,有BC的長,那么正方形的邊長就可以求出來了.
解答:(1)證明:∵等腰Rt△ABC中,∠C=90°,
∴∠A=∠B.
∵四邊形DEFG是正方形,
∴DE=GF,∠DEA=∠GFB=90°.
∴△ADE≌△BGF.
∴AE=BF.

(2)解:∵∠DEA=90°,∠A=45°,
∴∠ADE=45°.
∴AE=DE,同理BF=GF,又AB=
2
BC,
∴EF=AE=BF=
1
3
AB=
1
3
×
2
BC
=
1
3
×
2
×
2
=
2
3
(cm).
∴正方形DEFG的邊長為
2
3
cm.
點(diǎn)評:本題主要考查了全等三角形的判定和正方形的性質(zhì)等知識點(diǎn).判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D,E分別在AC,BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE,DF,EF.在此運(yùn)動(dòng)變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是( 。
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊精英家教網(wǎng)上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運(yùn)動(dòng)變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)M、N是AB上任意兩點(diǎn),且∠MCN=45°,點(diǎn)T為AB的中點(diǎn).以下結(jié)論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.
(1)在此運(yùn)動(dòng)變化的過程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習(xí)冊答案