【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測(cè)P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?
【答案】
(1)解:過(guò)點(diǎn)P作PH⊥OA于H,如圖.
設(shè)PH=3x,
在Rt△OHP中,
∵tanα= = ,
∴OH=6x.
在Rt△AHP中,
∵tanβ= = ,
∴AH=2x,
∴OA=OH+AH=8x=4,
∴x= ,
∴OH=3,PH= ,
∴點(diǎn)P的坐標(biāo)為(3, )
(2)解:若水面上升1m后到達(dá)BC位置,如圖,
過(guò)點(diǎn)O(0,0),A(4,0)的拋物線的解析式可設(shè)為y=ax(x﹣4),
∵P(3, )在拋物線y=ax(x﹣4)上,
∴3a(3﹣4)= ,
解得a=﹣ ,
∴拋物線的解析式為y=﹣ x(x﹣4).
當(dāng)y=1時(shí),﹣ x(x﹣4)=1,
解得x1=2+ ,x2=2﹣ ,
∴BC=(2+ )﹣(2﹣ )=2 =2×1.41=2.82≈2.8.
答:水面上升1m,水面寬約為2.8米.
【解析】(1)過(guò)點(diǎn)P作PH⊥OA于H,如圖,設(shè)PH=3x,運(yùn)用三角函數(shù)可得OH=6x,AH=2x,根據(jù)條件OA=4可求出x,即可得到點(diǎn)P的坐標(biāo);(2)若水面上升1m后到達(dá)BC位置,如圖,運(yùn)用待定系數(shù)法可求出拋物線的解析式,然后求出y=1時(shí)x的值,就可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校園文學(xué)社為了解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽查部分學(xué)生做了一次問(wèn)卷調(diào)查,要求學(xué)生選出自己最喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)該調(diào)查的樣本容量為 , a=%,“第一版”對(duì)應(yīng)扇形的圓心角為°;
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有1000名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡“第三版”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B(0, ).直線y=kx 過(guò)點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.
(1)求拋物線y= x2+bx+c與直線y=kx 的解析式;
(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)P作y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點(diǎn)M是邊AB的中點(diǎn),連結(jié)CM,點(diǎn)P從點(diǎn)C出發(fā),以1cm/s的速度沿CB運(yùn)動(dòng)到點(diǎn)B停止,以PC為邊作正方形PCDE,點(diǎn)D落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t=時(shí),點(diǎn)E落在△MBC的邊上;
(2)以E為圓心,1cm為半徑作圓E,則當(dāng)t=時(shí),圓E與直線AB或直線CM相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是( )
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.S△ADH=S△CEG
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對(duì)應(yīng)點(diǎn)分別為A′,B′,A′,B′均在圖中格點(diǎn)上,若線段AB上有一點(diǎn)P(m,n),則點(diǎn)P在A′B′上的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為( )
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為8cm,F(xiàn)G是等腰直角△EFG的斜邊,F(xiàn)G=10cm,點(diǎn)B、F、C、G都在直線l上,△EFG以1cm/s的速度沿直線l向右做勻速運(yùn)動(dòng),當(dāng)t=0時(shí),點(diǎn)G與B重合,記t(0≤t≤8)秒時(shí),正方形與三角形重合部分的面積是Scm2 , 則S與t之間的函數(shù)關(guān)系圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面問(wèn)題:2+22+23+24+…+22015﹣1的末位數(shù)字是( 。
A.0
B.3
C.4
D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com