【題目】如圖,折疊邊長為a的正方形ABCD,使點C落在邊AB上的點M處(不與點A,B重合),點D落在點N處,折痕EF分別與邊BC、AD交于點E、F,MN與邊AD交于點G.證明:
(1)△AGM∽△BME;
(2)若M為AB中點,則 ;
(3)△AGM的周長為2a.
【答案】
(1)證明:∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=90°,
∴∠AMG+∠AGM=90°,
∵EF為折痕,
∴∠GME=∠C=90°,
∴∠AMG+∠BME=90°,
∴∠AGM=∠BME,
在△AGM與△BME中,
∵∠A=∠B,∠AGM=∠BME,
∴△AGM∽△BME;
(2)解:∵M為AB中點,
∴BM=AM= ,
設BE=x,則ME=CE=a﹣x,
在Rt△BME中,∠B=90°,
∴BM2+BE2=ME2,即( )2+x2=(a﹣x)2,
∴x= a,
∴BE= a,ME= a,
由(1)知,△AGM∽△BME,
∴ = ,
∴AG= BM= a,GM= ME= a,
∴ ;
(3)解:設BM=x,則AM=a﹣x,ME=CE=a﹣BE,
在Rt△BME中,∠B=90°,
∴BM2+BE2=ME2,即x2+BE2=(a﹣BE)2,
解得:BE= ,
由(1)知,△AGM∽△BME,
∴ ,
∵C△BME=BM+BE+ME=BM+BE+CE=BM+BC=a+x,
∴C△AGM=C△BME =(a+x) =2a.
【解析】(1)根據正方形和折疊的性質,得到兩角對應相等,得到△AGM∽△BME;(2)由M為AB中點,再根據勾股定理和由(1)中的△AGM∽△BME,得到比例,證明出比例式;(3)根據勾股定理得到BE的代數式,再由(1)知,△AGM∽△BME,得到比例式,求出△AGM的周長為2a.
【考點精析】通過靈活運用翻折變換(折疊問題)和相似三角形的判定與性質,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數學 來源: 題型:
【題目】某商場正在熱銷2008年北京奧運會吉祥物“福娃”玩具和徽章兩種奧運商品,5個福娃2枚徽章145元,10個福娃3枚徽章280元(5個福娃為1套),則:
(1)一套“福娃”玩具和一枚徽章的價格各是多少元?
(2)買5套“福娃”玩具和10枚徽章共需要多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=2cm,E、F分別是BC、CD的中點,連接AE、EF、AF,則△AEF的周長為( )
A. 2cm B. 3 cm C. 4cm D. 3cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】填空,完成下列說理過程
如圖,已知點A,O,B在同一條直線上,OE平分∠BOC,∠DOE=90°
求證:OD是∠AOC的平分線;
證明:如圖,因為OE是∠BOC的平分線,
所以∠BOE=∠COE.( 。
因為∠DOE=90°
所以∠DOC+∠ =90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ 。健螪OA+∠BOE.
所以∠ 。健稀 。
所以OD是∠AOC的平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:DC=BE;
(2)連接BF,若BF⊥AE,求證:△ADF≌△ECF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣x+m=0有兩個不相等的實數根.
(1)求實數m的取值范圍;
(2)若方程的兩個實數根為x1、x2 , 且x1+x2+x1x2=m2﹣1,求實數m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的頂點都在方格紙的格點上,將△ABC向左平移2格,再向上平移3格,其中每個格子的邊長為1個單位長度。
(1)畫出△ABC邊AB上的高;
(2)請在圖中畫出平移后的三角形A’B’C’;
(3)若連接BB′,CC′,則這兩條線段之間的關系是_____________________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com