【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與y軸交于點(diǎn)B02),與反比例函數(shù)y的圖象交于點(diǎn)A4,﹣1).

1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;

2)如果點(diǎn)Px軸上的一點(diǎn),且△ABP的面積是3,求P點(diǎn)的坐標(biāo).

【答案】1y=-y=-x+2;(2)點(diǎn)P的坐標(biāo)為(,0)或(,0).

【解析】

1)把點(diǎn)B0,2)代入一次函數(shù)y=﹣x+b的關(guān)系式,可求出b的值,進(jìn)而確定一次函數(shù)的關(guān)系式,把點(diǎn)A4,﹣1)代入反比例函數(shù)y可求出m的值,進(jìn)而確定反比例函數(shù)關(guān)系式;

2)求出直線與x軸的交點(diǎn),根據(jù)三角形的面積可求出PM的長(zhǎng),再分兩種情況解答即可.

解:(1一次函數(shù)的圖象與軸交于點(diǎn),

一次函數(shù)的關(guān)系式為;

反比例函數(shù)的圖象過(guò)點(diǎn)

反比例函數(shù)的關(guān)系式為;

2)設(shè)直線軸的交點(diǎn)為;則,,

由△ABP的面積是3得,

,

當(dāng)點(diǎn)在點(diǎn)的右側(cè),則,因此點(diǎn),,

當(dāng)點(diǎn)在點(diǎn)的左側(cè),則,因此點(diǎn),

點(diǎn)的坐標(biāo)為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類(lèi):2小時(shí)以內(nèi),24小時(shí)(2小時(shí))46小時(shí)(4小時(shí)),6小時(shí)及以上,并繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.

(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“46小時(shí)對(duì)應(yīng)的圓心角度數(shù)為   °;

(3)若該地區(qū)共有20000名中學(xué)生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)購(gòu)買(mǎi)甲、乙兩種樹(shù)苗進(jìn)行綠化,已知甲種樹(shù)苗每棵30元,乙種樹(shù)苗每棵20元,且乙種樹(shù)苗棵數(shù)比甲種樹(shù)苗棵數(shù)的2倍少40棵,購(gòu)買(mǎi)兩種樹(shù)苗的總金額為9000元.

(1)求購(gòu)買(mǎi)甲、乙兩種樹(shù)苗各多少棵?

(2)為保證綠化效果,社區(qū)決定再購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共10棵,總費(fèi)用不超過(guò)230元,求可能的購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米

其中正確的結(jié)論有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,AEBCAFCD , 且E , F分別為BC , CD的中點(diǎn),求∠EAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠B45°,過(guò)點(diǎn)CCEAD于點(diǎn),連結(jié)AC,過(guò)點(diǎn)DDFAC于點(diǎn)F,交CE于點(diǎn)G,連結(jié)EF

1)若DG8,求對(duì)角線AC的長(zhǎng);

2)求證:AF+FGEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,下列條件中,能判斷直線L1L2的是( )

A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) 的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求以A,B,C,D為頂點(diǎn)的四邊形的面積;
(2)在拋物線上是否存在點(diǎn)P,使得△ABP的面積是△ABC的面積的2倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=D,求證:∠B=C

請(qǐng)?jiān)谙旅娴淖C明過(guò)程的括號(hào)內(nèi),填寫(xiě)依據(jù).

證明:∵∠1與∠CGD是對(duì)頂角,

∴∠1=CGD

∵∠1+2=180°(已知)

∴∠2+CGD=180°(等量代換)

AE//FD

∴∠AEC=D

∵∠A=D(已知)

∴∠AEC=A

AB//CD

∴∠B=C

查看答案和解析>>

同步練習(xí)冊(cè)答案