【題目】某城市有一段馬路需要整修,這段馬路的長不超過3450米.今有甲、乙、丙三個(gè)施工隊(duì),分別施工人行道、非機(jī)動(dòng)車道和機(jī)動(dòng)車道.他們于某天零時(shí)同時(shí)開工,每天24小時(shí)連續(xù)施工.若干天后的零時(shí),甲完成任務(wù);幾天后的18時(shí),乙完成任務(wù),自乙隊(duì)完成的當(dāng)天零時(shí)起,再過幾天后的8時(shí),丙完成任務(wù),已知三個(gè)施工隊(duì)每天完成的施工任務(wù)分別為300米、240米、180米,則這段路面有 米長.
【答案】3300
【解析】
解:設(shè)甲a天干完,乙b天+18小時(shí)干完,丙c天+8小時(shí)干完,乙隊(duì)最后一天完成180(米),丙隊(duì)最后一天完成60(米).
由題意得 300a=240(a+b)+180=180(a+b+c)+60,
即5a=4(a+b)+3=3(a+b+c)+1,
解得a=4b+3,b=
又∵0<a+b+c≤19、0<a+b≤14,0<a≤11
即a+b+c≤19、a+b≤14、a≤11,a=11時(shí),b=2,c=5;當(dāng)a為10時(shí),b不是整數(shù),舍去;
同理當(dāng)a為其它非負(fù)整數(shù)如9、8、7、6、5、4、3、2、1時(shí),b c不同時(shí)為非負(fù)整數(shù),
所以這段路面長:11×300=3300米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當(dāng)∠B= 時(shí),四邊形OCAD是菱形;
②當(dāng)∠B= 時(shí),AD與相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為AB邊上一點(diǎn),連接DE,將△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△CDF,作點(diǎn)F關(guān)于CD的對(duì)稱點(diǎn),記為點(diǎn)G,連接DG.
(1)依題意在圖1中補(bǔ)全圖形;
(2)連接BD,EG,判斷BD與EG的位置關(guān)系并在圖2中加以證明;
(3)當(dāng)點(diǎn)E為線段AB的中點(diǎn)時(shí),直接寫出∠EDG的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是平行四邊形,A、C兩點(diǎn)的坐標(biāo)分別為(4,0),(-2,3),拋物線W經(jīng)過O、A、C三點(diǎn),D是拋物線W的頂點(diǎn).
(1)求拋物線W的解析式及頂點(diǎn)D的坐標(biāo);
(2)將拋物線W和OABC一起先向右平移4個(gè)單位后,再向下平移m(0<m<3)個(gè)單位,得到拋物線W′和O′A′B′C′,在向下平移的過程中,設(shè)O′A′B′C′與OABC的重疊部分的面積為S,試探究:當(dāng)m為何值時(shí)S有最大值,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取最大值時(shí),設(shè)此時(shí)拋物線W′的頂點(diǎn)為F,若點(diǎn)M是x軸上的動(dòng)點(diǎn),點(diǎn)N是拋物線W′上的動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M和點(diǎn)N,使得以D、F、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著技術(shù)的發(fā)展進(jìn)步,某公司2018年采用的新型原料生產(chǎn)產(chǎn)品.這種新型原料的用量y(噸)與月份x之間的關(guān)系如圖1所示,每噸新型原料所生產(chǎn)的產(chǎn)品的售價(jià)z(萬元)與月份x之間的關(guān)系如圖2所示.已知將每噸這種新型原料加工成的產(chǎn)品的成本為20萬元.
(1)求出該公司這種新型原料的用量y(噸)與月份x之間的函數(shù)關(guān)系式;
(2)若該公司利用新型原料所生產(chǎn)的產(chǎn)品當(dāng)月都全部銷售,求哪個(gè)月利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn),與軸交于.
(1)求函數(shù)表達(dá)式;
(2)點(diǎn)是線段中點(diǎn),點(diǎn)是上方拋物線上一動(dòng)點(diǎn),連接,.當(dāng)的面積最大時(shí),過點(diǎn)作軸垂線,垂足為,點(diǎn)為線段上一動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn),,的對(duì)應(yīng)點(diǎn)分別是,,,點(diǎn)從點(diǎn)出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處,再沿運(yùn)動(dòng)到點(diǎn)處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)處停止.求面積的最大值及點(diǎn)經(jīng)過的最短路徑的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2 (m是常數(shù),且m≠0)的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù) (k ≠ 0) 在第一象限內(nèi)的圖象交于點(diǎn)A(1,m).
(1) 求反比例函數(shù)的表達(dá)式;
(2) 點(diǎn)B在反比例函數(shù)的圖象上, 且點(diǎn)B的橫坐標(biāo)為2. 若在x軸上存在一點(diǎn)M,使MA+MB的值最小,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個(gè)頂點(diǎn)分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com