【題目】如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,△ABC的面積是28cm2 , AB=16cm,AC=12cm,求DE的長(zhǎng).
【答案】解:∵AD為∠BAC的平分線,DE⊥AB,DF⊥AC, ∴DE=DF,
∵S△ABC=S△ABD+S△ACD= AB×DE+ AC×DF,
∴S△ABC= (AB+AC)×DE,
即 ×(16+12)×DE=28,
解得DE=2(cm).
【解析】根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DE=DF,再根據(jù)S△ABC=S△ABD+S△ACD列方程計(jì)算即可得解.
【考點(diǎn)精析】本題主要考查了角平分線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC與Rt△DEF的位置如圖所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射線CB以每秒1個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),射線DE、DF與射線AB分別交于N、M兩點(diǎn),運(yùn)動(dòng)時(shí)間為t,當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).
(1)當(dāng)Rt△DEF在起始時(shí),求∠AMF的度數(shù);
(2)設(shè)BC的中點(diǎn)的為P,當(dāng)△PBM為等腰三角形時(shí),求t的值;
(3)若兩個(gè)三角形重疊部分的面積為S,寫(xiě)出S與t的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠BCD=120°,分別延長(zhǎng)DC、BC到點(diǎn)E,F(xiàn),使得△BCE和△CDF都是正三角形.
(1)求證:AE=AF;
(2)求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把a(bǔ)3﹣2a2+a分解因式的結(jié)果是( )
A.a2(a﹣2)+a
B.a(a2﹣2a)
C.a(a+1)(a﹣1)
D.a(a﹣1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中x和y的值如下表:( )
x | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 |
y | -5.6 | -3.1 | -1.5 | 0.9 | 1.8 |
則ax2+bx+c=0的一個(gè)根的范圍是( )
A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.a5+a5=a10
B.﹣a6(﹣a)4=a10
C.(﹣bc)4÷(﹣bc)2=b2c2
D.(﹣ab)2a=﹣a3b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC , D為邊BC上一點(diǎn),以AB、BD為鄰邊作平行四邊形ABDE , 連接AD、EC . 若BD=CD , 求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是長(zhǎng)方形紙帶,∠DEF=10°,將紙帶沿EF折疊成圖2,再沿BF折疊成圖3,則圖3中∠CFE度數(shù)是多少( )
A.160°
B.150°
C.120°
D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在鈍角△ABC中,點(diǎn)D是BC的中點(diǎn),分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點(diǎn),連接DM、DN、DE、DF、EM、EF、FN.求證:
(1)△EMD≌△DNF;
(2)△EMD∽△EAF;
(3)DE⊥DF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com