【題目】如圖,在等邊中,,動點從點出發(fā)以的速度沿勻速運動.動點同時從點出發(fā)以同樣的速度沿的延長線方向勻速運動,當(dāng)點到達(dá)點時,點同時停止運動.設(shè)運動時間為以.過點,連接邊于.以為邊作平行四邊形

1)當(dāng)為何值時,為直角三角形;

2)是否存在某一時刻,使點的平分線上?若存在,求出的值,若不存在,請說明理由;

3)求的長;

4)取線段的中點,連接,將沿直線翻折,得,連接,當(dāng)為何值時,的值最小?并求出最小值.

【答案】1時,是直角三角形;(2,存在,見解析;(33;(4的最小值為

【解析】

1)當(dāng)時, ,由此構(gòu)建方程即可解決問題.

2)如圖1中,連接BF.證明,由此構(gòu)建方程即可解決問題.

3)證明即可解決問題.

4)如圖3中,連接.根據(jù)求解即可解決問題.

解:(1)∵是等邊三角形,

,

∴當(dāng)時,,

,

時,是直角三角形.

2)存在.

理由:如圖1中,連接

平分,

,

,

,

解得

3)如圖2中,作

是等邊三角形,

,

,

,

是等邊三角形,

,

,

,

,

,

4)如圖3中,連接

,

,

,

的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中, 的度數(shù)為120°,點P為弦AB上的一點,連結(jié)OP并延長交⊙O于點C,連結(jié)OB,AC

1)若PAB中點,且PC1,求圓的半徑.

2)若BPBA13,請求出tanOPA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種商品,童威經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(元/件)的一次函數(shù),其售價、周銷售量、周銷售利潤(元)的三組對應(yīng)值如下表:

售價(元/件)

50

60

80

周銷售量(件)

100

80

40

周銷售利潤(元)

1000

1600

1600

注:周銷售利潤=周銷售量×(售價-進(jìn)價)

1)①求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)

②該商品進(jìn)價是_________/件;當(dāng)售價是________/件時,周銷售利潤最大,最大利潤是__________

2)由于某種原因,該商品進(jìn)價提高了/,物價部門規(guī)定該商品售價不得超過65/件,該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤是1400元,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程有實數(shù)根.

1)求的取值范圍.

2)若該方程的兩個實數(shù)根為、,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒梅中學(xué)為了豐富學(xué)生的課余生活,計劃購買圍棋和中國象棋供棋類興趣小組活動使用,若購買3副圍棋和5副中國象棋需用98元;若購買8副圍棋和3副中國象棋需用158元;(1)求每副圍棋和每副中國象棋各多少元;(2)寒梅中學(xué)決定購買圍棋和中國象棋共40副,總費用不超過550元,那么寒梅中學(xué)最多可以購買多少副圍棋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某生態(tài)體驗園推出了甲、乙兩種消費卡,設(shè)入園次數(shù)為x時所需費用為y元,選擇這兩種卡消費時,yx的函數(shù)關(guān)系如圖所示,解答下列問題

1)分別求出選擇這兩種卡消費時,y關(guān)于x的函數(shù)表達(dá)式;

2)請根據(jù)入園次數(shù)確定選擇哪種卡消費比較合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abam2+bmm為實數(shù));⑤4acb20.其中正確結(jié)論的個數(shù)是( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,BC的切線,弦ADOC,直線CD交的BA延長線于點E,連接BD.下列結(jié)論:①CD的切線;②;③;④.其中正確結(jié)論的個數(shù)有(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且BC為⊙O的直徑,在劣弧上取一點D,使,將ADC沿AD對折,得到ADE,連接CE

1)求證:CE是⊙O的切線;

2)若CEC D,劣弧的弧長為π,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案