【題目】如圖,在正方形網(wǎng)格中,△OBC的頂點(diǎn)分別為O(0,0),B(3,﹣1)、C(2,1).
(1)以點(diǎn)O(0,0)為位似中心,按比例尺2:1在位似中心的異側(cè)將△OBC放大為△OB′C′,放大后點(diǎn)B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為B′、C′,畫出△OB′C′ , 并寫出點(diǎn)B′、C′的坐標(biāo):B′( , ),C′( , );
(2)在(1)中,若點(diǎn)M(x,y)為線段BC上任一點(diǎn),寫出變化后點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)( , ).
【答案】
(1);﹣6;2;﹣4;﹣2
(2)﹣2x;﹣2y
【解析】解:(1)如圖
B′(﹣6,2),C′(﹣4,﹣2)
2)M′(﹣2x,﹣2y).
(1)延長(zhǎng)BO,CO,根據(jù)相似比,在延長(zhǎng)線上分別截取AO,BO,CO的2倍,確定所作的位似圖形的關(guān)鍵點(diǎn)A',B',C'再順次連接所作各點(diǎn),即可得到放大2倍的位似圖形△OB'C';再根據(jù)點(diǎn)的位置寫出點(diǎn)的坐標(biāo)即可;(2)M′的坐標(biāo)的橫坐標(biāo)、縱坐標(biāo)分別是M的坐標(biāo)的2倍的相反數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,點(diǎn)D在底邊BC上,添加下列條件后,仍無(wú)法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,可以理解為,它表示:數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義。進(jìn)一步地,數(shù)軸上的兩個(gè)點(diǎn)A,B分別用數(shù)表示,那么A,B兩點(diǎn)之間的距離為,反過來(lái),式子的幾何意義是:數(shù)軸上表示數(shù)的點(diǎn)和表示數(shù)的點(diǎn)之間的距離。利用此結(jié)論,的意義就是數(shù)軸上表示數(shù)的點(diǎn)到表示-2和表示3的點(diǎn)的距離之和是5,若是整數(shù),則符合的的個(gè)數(shù)是( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB= BC,點(diǎn)N在BC邊上,連接AN,CM,點(diǎn)E,F(xiàn),D,G分別為AC,AN,MN,CM的中點(diǎn),連接EF,F(xiàn)D,DG,EG.
(1)判斷四邊形EFDG的形狀,并證明;
(2)如圖2,將圖1中的△MBN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,其他條件不變,猜想此時(shí)四邊形EFDG的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請(qǐng)判斷△APQ是什么三角形,試說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工廠以每噸3000元的價(jià)格購(gòu)進(jìn)50噸原料進(jìn)行加工.若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需 天,每噸售價(jià)4000元;若進(jìn)行精加工,每噸加工費(fèi)用為900元,需 天,每噸售價(jià)4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.
(1)請(qǐng)完成表格并求出y與x的函數(shù)關(guān)系式(不要求寫自變量的范圍); 表一
粗加工數(shù)量/噸 | 3 | 7 | x |
精加工數(shù)量/噸 | 47 |
表二
粗加工數(shù)量/噸 | 3 | 7 | x |
粗加工獲利/元 | 2800 | ||
精加工獲利/元 | 25800 |
y與x的函數(shù)關(guān)系式
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M,N分別是斜邊AB,DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD、MN.
(1)求證:△PMN為等腰直角三角形;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP,BD分別交于點(diǎn)G、H,請(qǐng)判斷①中的結(jié)論是否成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com