【題目】如圖,AD是△ABC的中線,tanB= , cosC= , AC= . 求:
(1)BC的長(zhǎng);
(2)sin∠ADC的值.

【答案】解:(1)過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,
∵cosC=,
∴∠C=45°,
在Rt△ACE中,CE=ACcosC=1,
∴AE=CE=1,
在Rt△ABE中,tanB=,即=,
∴BE=3AE=3,
∴BC=BE+CE=4;
(2)∵AD是△ABC的中線,
∴CD=BC=2,
∴DE=CD﹣CE=1,
∵AE⊥BC,DE=AE,
∴∠ADC=45°,
∴sin∠ADC=

【解析】(1)過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,根據(jù)cosC= , 求出∠C=45°,求出AE=CE=1,根據(jù)tanB= , 求出BE的長(zhǎng)即可;
(2)根據(jù)AD是△ABC的中線,求出BD的長(zhǎng),得到DE的長(zhǎng),得到答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識(shí),掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,O為原點(diǎn),現(xiàn)A,B兩點(diǎn)分別以1個(gè)單位長(zhǎng)度/秒的速度同時(shí)向左運(yùn)動(dòng)。

(1)幾秒后,原點(diǎn)恰好在A,B兩點(diǎn)正中間?

(2)幾秒后,恰好有OA:OB=1:2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校大門出口處有一自動(dòng)感應(yīng)欄桿,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),當(dāng)車輛經(jīng)過(guò)時(shí),欄桿AE會(huì)自動(dòng)升起,某天早上,欄桿發(fā)生故障,在某個(gè)位置突然卡住,這時(shí)測(cè)得欄桿升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大門BC打開(kāi)的寬度為2米,以下哪輛車可以通過(guò)?( 。
(欄桿寬度,汽車反光鏡忽略不計(jì))
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.車輛尺寸:長(zhǎng)×寬×高)

A.寶馬Z4(4200mm×1800mm×1360mm)
B.奇瑞QQ(4000mm×1600mm×1520mm)
C.大眾朗逸(4600mm×1700mm×1400mm)
D.奧迪A4(4700mm×1800mm×1400mm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此類推,則a2015的值為( 。

A. ﹣2015 B. ﹣2014 C. ﹣1007 D. ﹣1008

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道不等式的兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變.不等式組是否也具有類似的性質(zhì)呢?請(qǐng)解答下列問(wèn)題.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請(qǐng)你說(shuō)明上述性質(zhì)的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形網(wǎng)格中,給出了ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)).

(1)△ABC的面積為   ;

(2)在直線l上找一點(diǎn)P,使點(diǎn)P到邊AB、BC的距離相等.

(3)畫(huà)出ABC關(guān)于直線l對(duì)稱的圖形△A1B1C1;再將△A1B1C1向下平移4個(gè)單位,畫(huà)出平移后得到的△A2B2C2

(4)結(jié)合軸對(duì)稱變換和平移變換的有關(guān)性質(zhì),兩個(gè)對(duì)應(yīng)三角形ABC和△A2B2C2的對(duì)應(yīng)點(diǎn)所具有的性質(zhì)是(   ).

A.對(duì)應(yīng)點(diǎn)連線與對(duì)稱軸垂直 B.對(duì)應(yīng)點(diǎn)連線被對(duì)稱軸平分或與對(duì)稱軸重合

C.對(duì)應(yīng)點(diǎn)連線被對(duì)稱軸垂直平分 D.對(duì)應(yīng)點(diǎn)連線互相平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D是BC邊上的一點(diǎn),∠B=44°,∠BAD=28°,將ABD沿AD折疊得到AED,AE與BC交于點(diǎn)F.

(1)填空:∠AFC=   度;

(2)EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論: ①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),
其中正確結(jié)論的個(gè)數(shù)是(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(–3,–1).

(1)將△ABC先沿x軸向右平移3個(gè)單位,再沿y軸向上平移2個(gè)單位得到△A1B1C1,畫(huà)出△A1B1C1,并寫(xiě)出點(diǎn)B1坐標(biāo).

(2)畫(huà)出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2,并寫(xiě)出點(diǎn)C2的坐標(biāo).

(3)求出△A2B2C2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案