【題目】從﹣4,﹣3,1,3,4這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為m,若m使得關(guān)于x,y的二元一次方程組 有解,且使關(guān)于x的分式方程 ﹣1= 有正數(shù)解,那么這五個(gè)數(shù)中所有滿足條件的m的值之和是( )
A.1
B.2
C.﹣1
D.﹣2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣4,﹣3,1,3,4這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為m,若m使得關(guān)于x,y的二元一次方程組 有解,且使關(guān)于x的分式方程 ﹣1= 有正數(shù)解,那么這五個(gè)數(shù)中所有滿足條件的m的值之和是( )
A.1
B.2
C.﹣1
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD頂點(diǎn)A、B在x軸上,點(diǎn)D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)C(2,3),直線AD交雙曲線于點(diǎn)E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點(diǎn)F.
(1)若EB= OD,求點(diǎn)E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點(diǎn)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長線上一點(diǎn),AE=AB.
(1)求∠ADE的度數(shù);
(2)求證:DE=AD+DC;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN與x軸、y軸分別相交于B、A兩點(diǎn),OA,OB的長滿足式子
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)O到AB的距離為,求線段AB的長;
(3)在(2)的條件下,x軸上是否存在點(diǎn)P,使ΔABP使以AB為腰的等腰三角形,若存在請(qǐng)直接寫出滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),其中,,點(diǎn)是軸負(fù)半軸上一點(diǎn),點(diǎn)是在直線與直線之間的一點(diǎn),連接、,平分,平分,交于,則與之間可滿足的數(shù)量關(guān)系式為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圖中點(diǎn)和點(diǎn)的坐標(biāo)分別為和.
(1)請(qǐng)?jiān)趫D1中畫出坐標(biāo)軸建立適當(dāng)?shù)闹苯亲鴺?biāo)系;
(2)寫出點(diǎn)的坐標(biāo)為________;
(3)連接、和得,在軸有點(diǎn)滿足,則點(diǎn)的坐標(biāo)為________,________個(gè)平方單位;
(4)已知第一象限內(nèi)有兩點(diǎn),平移線段使點(diǎn)、分別落在兩條坐標(biāo)軸上,則點(diǎn)平移后的對(duì)應(yīng)點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com