【題目】某校在藝術(shù)節(jié)選拔節(jié)目過程中,從備選的“街舞”、“爵士”、“民族”、“拉丁”四種類型舞蹈中,選擇一種學(xué)生最喜愛的舞蹈,為此,隨機(jī)調(diào)查了本校的部分學(xué)生,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(每位學(xué)生只選擇一種類型),根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問題:
類型 | 民族 | 拉丁 | 爵士 | 街舞 |
據(jù)點(diǎn)百分比 | a | 30% | b | 15% |
(1)本次抽樣調(diào)查的學(xué)生人數(shù)及a、b的值.
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若該校共有1500名學(xué)生,試估計(jì)全校喜歡“拉丁舞蹈”的學(xué)生人數(shù).
【答案】
(1)解:總?cè)藬?shù):60÷30%=200(人),a=50÷200=25%,
b=(200﹣50﹣60﹣30)÷200=30%;
(2)解:如圖所示:
(3)解:1500×30%=450(人).
答:約有450人喜歡“拉丁舞蹈”.
【解析】(1)由“拉丁”的人數(shù)及所占百分比可得總?cè)藬?shù),由條形統(tǒng)計(jì)圖可直接得a、b的值;(2)由(1)中各種類型舞蹈的人數(shù)即可補(bǔ)全條形圖;(3)用樣本中“拉丁舞蹈”的百分比乘以總?cè)藬?shù)可得.
【考點(diǎn)精析】通過靈活運(yùn)用統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖,掌握制作統(tǒng)計(jì)表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計(jì)表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫欄目、各項(xiàng)目名稱及數(shù)據(jù).(4)計(jì)算總計(jì)和合計(jì)并填入表中,一般總計(jì)放在橫欄最左格,合計(jì)放在豎欄最上格.(5)寫好表格名稱并標(biāo)明制表時間;能清楚地表示出每個項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動點(diǎn),則線段的OM的長的取值范圍是( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東60°方向,距離燈塔86n mile的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,此時,B處與燈塔P的距離約為 n mile.(結(jié)果取整數(shù),參考數(shù)據(jù): ≈1.7, ≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣4=0
(1)當(dāng)m為何值時,方程有兩個不相等的實(shí)數(shù)根?
(2)若邊長為5的菱形的兩條對角線的長分別為方程兩根的2倍,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論正確的個數(shù)是( ) ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對一組數(shù)據(jù):﹣2,1,2,1,下列說法不正確的是( )
A.平均數(shù)是1
B.眾數(shù)是1
C.中位數(shù)是1
D.極差是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式組 的解集中至少有5個整數(shù)解,則正數(shù)a的最小值是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(2,2),對稱軸是直線x=1,頂點(diǎn)為B.
(1)求這條拋物線的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)點(diǎn)M在對稱軸上,且位于頂點(diǎn)上方,設(shè)它的縱坐標(biāo)為m,聯(lián)結(jié)AM,用含m的代數(shù)式表示∠AMB的余切值;
(3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)C在x軸上.原拋物線上一點(diǎn)P平移后的對應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com