【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB , 垂足為D , AB=c , ∠a=α , 則CD長為( )
A.csin2α
B.ccos2α
C.csinαtanα
D.csinαcosα
【答案】D
【解析】解答:在Rt△ABC中,∠ACB=90°,AB=c , ∠A=α , sinα= ,BC=csinα ,
∠A+∠B=90°,∠DCB+∠B=90°,
∴∠DCB=∠A=α ,
在Rt△DCB中,∠CDB=90°,
cos∠DCB= ,
CD=BCcosα=csinαcosα ,
故選:D.
分析:根據已知條件在Rt△ABC中,用AB和α表示BC,在Rt△DCB中,根據余弦求出CD的長,得到答案 .
【考點精析】利用解直角三角形對題目進行判斷即可得到答案,需要熟知解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法).
科目:初中數學 來源: 題型:
【題目】.已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是長方形,點A、C、D的坐標分別為A(9,0)、C(0,4),D(5,0),點P從點O出發(fā),以每秒1個單位長度的速度沿O C B A運動,點P的運動時間為t秒.
(1)當t=2時,求直線PD的解析式。
(2)當P在BC上,OP+PD有最小值時,求點P的坐標。
(3)當t為何值時,△ODP是腰長為5的等腰三角形?(直接寫出t的值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,正方形EFGH是由正方形ABCD經過位似變換得到的,點O是位似中心,E , F , G , H分別是OA , OB , OC , OD的中點,則正方形EFGH與正方形ABCD的面積比是( 。
A.1:6
B.1:5
C.1:4
D.1:2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點坐標分別是O(0,0),A(3,0),B(4,4),C(-2,3),將點O , A , B , C的橫坐標、縱坐標都乘以-2.
(1)畫出以變化后的四個點為頂點的四邊形;
(2)由(1)得到的四邊形與四邊形OABC位似嗎?如果位似,指出位似中心及與原圖形的相似比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課外興趣小組的同學們要測量被池塘相隔的兩棵樹A.B的距離,他們設計了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到E , 再從E沿著垂直于AE的方向走到F , C為AE上一點,其中3位同學分別測得三組數據:①AC , ∠ACB;②EF.DE.AD;③CD , ∠ACB , ∠ADB.其中能根據所測數據求得A.B兩樹距離的有( 。
A.0組
B.一組
C.二組
D.三組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湖南路大橋于今年5月1日竣工,為徒駭河景區(qū)增添了一道亮麗的風景線 . 某校數學興趣小組用測量儀器測量該大橋的橋塔高度,在距橋塔AB底部50米的C處,測得橋塔頂部A的仰角為41.5°(如圖) . 已知測量儀器CD的高度為1米,則橋塔AB的高度約為( 。▍⒖紨祿sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)
A.34米
B.38米
C.45米
D.50米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標中,已知點O(0,0),A(0,2),B(1,0),點P是反比例函數y=-
圖象上的一個動點,過點P作PQ⊥x軸,垂足為Q . 若以點O、P、Q為頂點的三角形與△OAB相似,則相應的點P共有( 。.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com