【題目】目前微信、支付寶共享單車網(wǎng)購給我們帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)你最認(rèn)可的四大新生事物進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)根據(jù)圖中信息求出=___________,=_____________;

2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;

3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生種,大約有多少人最認(rèn)可微信這一新生事物?

【答案】1)100,35;(2)詳見解析;(3800人.

【解析】

1)由共享單車的人數(shù)以及其所占百分比可求得總?cè)藬?shù)m,用支付寶人數(shù)除以總?cè)藬?shù)可得其百分比n的值;

2)總?cè)藬?shù)乘以網(wǎng)購的百分比可求得網(wǎng)購人數(shù),用微信人數(shù)除以總?cè)藬?shù)求得其百分比,由此即可補(bǔ)全兩個(gè)圖形;

3)總?cè)藬?shù)乘以樣本中微信人數(shù)所占百分比即可求得答案.

1)抽查的總?cè)藬?shù)m=10÷10%=100,

支付寶的人數(shù)所占百分比n%==35%,所以n=35,

故答案為:100,35;

2)網(wǎng)購人數(shù)為:100×15%=15人,

微信對(duì)應(yīng)的百分比為:,

補(bǔ)全圖形如圖所示:

3)估算全校2000名學(xué)生種,最認(rèn)可微信這一新生事物的人數(shù)為:2000×40%=800人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李和小陸從 A 地出發(fā),騎自行車沿同一條路行駛到 B 地,他們離出發(fā)地的距離 s和行駛時(shí)間t之間的關(guān)系的圖象如圖,根據(jù)圖象回答下列問題:

(1) 小李在途中逗留的時(shí)間為___________h,小陸從 A 地到 B 地的速度是________km/h;

(2) 當(dāng)小李和小陸相遇時(shí),他們離 B 地的路程是____________千米;

(3) 寫出小李在逗留之前離 A 地的路程s和行駛時(shí)間t之間的函數(shù)關(guān)系式為_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽,七、八年級(jí)根據(jù)初賽成績(jī)各選出5名選手組成代表隊(duì)參加決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

七年級(jí)

a

85

b

S七年級(jí)2

八年級(jí)

85

c

100

160

1)根據(jù)圖示填空:a   ,b   ,c   ;

2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)代表隊(duì)的決賽成績(jī)較好?

3)計(jì)算七年級(jí)代表隊(duì)決賽成績(jī)的方差S七年級(jí)2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點(diǎn)F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DEAM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1,ADBCBEAC

∴∠ADB=AEF=90°,

∵∠ABC=45°,

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD

∴∠DAC=EBC,

ADCBDF中,

,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如圖2,由折疊得:MD=DC

DEAM,

AE=EC,

BEAC,

AB=BC,

∴∠ABE=CBE

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM

∴△BDF≌△ADM,

∴∠DBF=MAD,

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE,

NAE=2NAD=2CBE

∴∠ANE=NAE=45°,

AE=EN

EN=AC

型】解答
結(jié)束】
19

【題目】某校學(xué)生會(huì)決定從三明學(xué)生會(huì)干事中選拔一名干事當(dāng)學(xué)生會(huì)主席,對(duì)甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測(cè)試成績(jī)?nèi)缦卤硭荆?/span>

測(cè)試項(xiàng)目

測(cè)試成績(jī)/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對(duì)三人進(jìn)行民主測(cè)評(píng),三人得票率如扇形統(tǒng)計(jì)圖所示(沒有棄權(quán),每位同學(xué)只能推薦1人),每得1票記1分

(1)分別計(jì)算三人民主評(píng)議的得分;

(2)根據(jù)實(shí)際需要,學(xué)校將筆試、面試、民主評(píng)議三項(xiàng)得分按3:3:4的比例確定個(gè)人成績(jī),三人中誰會(huì)當(dāng)選學(xué)生會(huì)主席?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是兩種長(zhǎng)方形鋁合金窗框,已知窗框的長(zhǎng)都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個(gè),(2)型的窗框2個(gè).

(1)用含x、y的式子表示共需鋁合金的長(zhǎng)度;

(2)若1m鋁合金的平均費(fèi)用為100元,求當(dāng)x=1.2,y=1.5時(shí),鋁合金的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A04)是直角坐標(biāo)系y軸上一點(diǎn),動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),沿x軸正半軸運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)在第一象限內(nèi)作等腰RtAPB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.

1)若AB//x軸,求t的值;

2)當(dāng)t=3時(shí),坐標(biāo)平面內(nèi)有一點(diǎn)M(不與A重合),使得以M、P、B為頂點(diǎn)的三角形和△ABP全等,請(qǐng)求出點(diǎn)M的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)A、B分別在xy軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.

1)求AB的長(zhǎng)度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點(diǎn),求證:BD=OE;

3)在(2)的條件下,連接DEABF,求證:FDE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)Cy軸上一點(diǎn)將坐標(biāo)平面沿直線AC折疊,使點(diǎn)B剛好落在x負(fù)半軸上,則點(diǎn)C的坐標(biāo)為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平面直角坐標(biāo)系xOy中,B01),OBOCOAA、C分別在x軸的正負(fù)半軸上.過點(diǎn)C的直線繞點(diǎn)C旋轉(zhuǎn),交y軸于點(diǎn)D,交線段AB于點(diǎn)E

1)求∠OAB的度數(shù)及直線AB的解析式;

2)若△OCD與△BDE的面積相等,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案