【題目】如圖,點(diǎn)AB⊙O上,直線AC⊙O的切線,OC⊥OB,連接ABOC于點(diǎn)D

1ACCD相等嗎?為什么?

2)若AC=2AO=,求OD的長度.

【答案】1AC=CD2OD=1

【解析】

解:(1AC=CD,理由如下:

∵OA=OB,∴∠OAB=∠B

直線AC為圓O的切線,∴∠OAC=∠OAB+∠DAC=90°

∵OB⊥OC∴∠BOC=90°∴∠ODB+∠B=90°。

∵∠ODB=∠CDA,∴∠CDA+∠B=90°。

∴∠DAC=∠CDA。∴AC=CD

2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,

根據(jù)勾股定理得:OC2=AC2+AO2,即(OD+22=22+2

解得:OD=1(負(fù)值已舍去)。

1AC=CD,理由為:由AC為圓的切線,利用切線的性質(zhì)得到∠OAC為直角,再由OCOB垂直,得到∠BOC為直角,由OA=OB,利用等邊對等角得到一對角相等,再利用對頂角相等及等角的余角相等得到一對角相等,利用等角對等邊即可得證。

2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的長。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在正方形的網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B的坐標(biāo)為(﹣20.

按要求回答下列問題:

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,直接寫出點(diǎn)C的坐標(biāo) ( , );

(3)作出三角形ABC關(guān)于y軸對稱的三角形A1B1C1;

(4)ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)佳節(jié),民間歷來有吃粽子的習(xí)俗.南方某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)査毎人必選一種且只能選一種口味,并將調(diào)査情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整):

請根據(jù)以上信息冋答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,IB,IC分別平分∠ABC,∠ACB,過I點(diǎn)作DEBC,分別交ABD,交ACE,給出下列結(jié)論:①DBI是等腰三角形;②ACI是等腰三角形;③AI平分∠BAC;④ADE周長等于AB+AC,其中正確的是: ___________(只需填寫序號)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,點(diǎn)A(-2,4),B(4,2),在x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,則點(diǎn)P的坐標(biāo)是( )

A. (-2,0) B. (0,0) C. (2,0) D. (4,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,根據(jù)要求回答下列問題:

(1)點(diǎn)A關(guān)于y軸對稱點(diǎn)A′的坐標(biāo)是  ;點(diǎn)B關(guān)于y軸對稱點(diǎn)B′的坐標(biāo)是  

(2)作出ABC關(guān)于y軸對稱的圖形A′B′C′(不要求寫作法)

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線AB軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC交于點(diǎn)C

1)若直線AB解析式為

求點(diǎn)C的坐標(biāo);

△OAC的面積.

2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA4,P、Q分別為線段OA、OE上的動(dòng)點(diǎn),連結(jié)AQPQ,試探索AQPQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)DE分別在邊BC,AC上,DEAB,過點(diǎn)EEFDE,交BC的延長線于點(diǎn)F

1)求∠F的度數(shù);

2)若CE=4,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BAC,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,且BD=CD.

(1)圖中與△BDE全等的三角形是 ,請加以證明;

(2)若AE=6 cm,AC=4 cm,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案