如圖,AB為⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠DCB=∠A.
(1)CD與⊙O相切嗎?如果相切,請你加以證明;如果不相切,請說明理由.
(2)若CD與⊙O相切,且∠D=30°,BD=10,求⊙O的半徑.

【答案】分析:(1)相切,由已知可證得∠OCD=90°即CD是⊙O的切線;
(2)由已知可推出∠A=∠BCD=30°,即BC=BD=10,從而得到AB=20即可得到半徑的長.
解答:解:(1)CD與⊙O相切.
證明:∵AB為⊙O的直徑,C是⊙O上一點,
∴∠ACB=90°,即∠ACO+∠OCB=90°;
∵∠A=∠OCA,且∠DCB=∠A,
∴∠OCA=∠DCB,
∴∠OCD=90°,
∴CD是⊙O的切線.

(2)在Rt△OCD中,∠D=30°;
∴∠COD=60°,
∴∠A=30°,
∴∠BCD=30°,
∴BC=BD=10,
∴AB=20,
∴r=10.
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習(xí)冊答案