【題目】如圖1,點(diǎn)A、B在直線上,點(diǎn)C、D在直線上,AE平分∠BAC,CE平分∠ACD,
∠EAC+∠ACE=90° .
(1)請(qǐng)判斷與的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(不與點(diǎn)C重合)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?請(qǐng)說明理由.
【答案】(1)∥;(2)①當(dāng)Q在C點(diǎn)左側(cè)時(shí),∠BAC=∠CQP +∠CPQ,②當(dāng)Q在C點(diǎn)右側(cè)時(shí),∠CPQ+∠CQP+∠BAC=180°.
【解析】(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;
(2)分兩種情況討論:①當(dāng)Q在C點(diǎn)左側(cè)時(shí);②當(dāng)Q在C點(diǎn)右側(cè)時(shí).
(1)∥.理由如下:
∵AE平分∠BAC,CE平分∠ACD(已知),
∴∠BAC=2∠1,∠ACD=2∠2(角平分線的定義);
又∵∠1+∠2=90°(已知),
∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代換)
∴∥(同旁內(nèi)角互補(bǔ),兩直線平行)
(2)①當(dāng)Q在C點(diǎn)左側(cè)時(shí),過點(diǎn)P作PE∥.
∵∥(已證),
∴PE∥(同平行于一條直線的兩直線互相平行),
∴∠1=∠2,(兩直線平行,內(nèi)錯(cuò)角相等),
∠BAC=∠EPC,(兩直線平行,同位角相等),
又∵∠EPC=∠1+∠CPQ,
∴∠BAC=∠CQP +∠CPQ(等量代換)
②當(dāng)Q在C點(diǎn)右側(cè)時(shí),過點(diǎn)P作PE∥.
∵∥(已證),
∴PE∥(同平行于一條直線的兩直線互相平行),
∴∠1=∠2,∠BAC=∠APE,(兩直線平行,內(nèi)錯(cuò)角相等),
又∵∠EPC=∠1+∠CPQ,
∠APE+∠EPC=180°(平角定義)
∴∠CPQ+∠CQP+∠BAC=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 Rt△ABE,連接 ED, EC,延長CE 交AD 于F 點(diǎn),下列結(jié)論:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正確的有( )
A. ①③B. ①②④C. ①②③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C任作一射線CM,交AB于M,分別過A,B作AE⊥CM,BF⊥CM,垂足分別為E,F.
(1)求證:∠ACE=∠CBF;
(2)求證:AE=CF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開展“中國詩詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請(qǐng)用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)某班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).
時(shí)間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,表中給出的是某月的月歷,任意選取“”型框中的個(gè)數(shù)(如陰影部分所示).請(qǐng)你運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)來研究,則這個(gè)數(shù)的和不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.
(1)如圖1,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時(shí),S△ABD:S△ACD= ;
(2)如圖2,當(dāng)AD是∠BAC的平分線時(shí),若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代數(shù)式表示)
(3)如圖3,AD平分∠BAC,延長AD到E,使得AD=DE,連接BE,如果AC=2,AB=4,S△BDE=6,
那么S△ABC = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識(shí)競賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識(shí)競賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請(qǐng)用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.
(1)作出△ABD 的邊 BD 上的高.
(2)若△ABC 的面積為 10,求△ADC 的面積.
(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com