【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2 , 并直接寫出點B2、C2的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AD平分∠BAC,過A,C,D三點的圓與斜邊AB交于點E,連接DE.
(1)求證:AC=AE;
(2)若AC=6,CB=8,求△ACD的外接圓的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分7分)在一棵樹的10米高處有兩只猴子,一只猴子爬下樹走到離樹20米處的池塘的A處。另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,求這棵樹高。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關系
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上有三個點A,B,C,請回答下列問題:
(1)將點C向左移動6個單位長度后,這時點B所表示的數(shù)比點C所表示的數(shù)大
多少?
(2)怎樣移動A,B,C中的兩個點,才能使這三個點表示相同的數(shù)?有幾種移法?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E
(1)求A、B的坐標;
(2)求直線BC的解析式;
(3)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.
(1)如圖1,若P為AB邊上一點以PD,PC為邊作平行四邊形PCQD,請問對角線PQ的長是否存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
(2)若P為AB邊上任意一點,延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請問對角線PQ的長是否也存在最小值?如果存在,請直接寫出最小值,如果不存在,請說明理由.
(3)如圖2,若P為直線DC上任意一點,延長PA到E,使AE=AP,以PE、PB為邊作平行四邊形PBQE,請問對角線PQ的長是否存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某巡警車在一條南北大道上巡邏,某天巡警車從崗亭處出發(fā),規(guī)定向北方向為正,當天行駛紀錄如下(單位:千米)
﹣10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2
(1)最終巡警車是否回到崗亭處?若沒有,在崗亭何方,距崗亭多遠?
(2)摩托車行駛1千米耗油0.2升,油箱有油10升,夠不夠?若不夠,途中還需補充多少升油?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com