【題目】如圖,四邊形ABCD中,AD//BC,∠A90°,CDCB,過點(diǎn)C作∠DCB的平分線CEAB于點(diǎn)E,連接DE,過點(diǎn)DDF//AB,且交CEF點(diǎn),連接BF

1)求證:四邊形DEBF是菱形;

2)若AB5BC13,求tanAED的值.

【答案】1)見解析;(2tanAED=

【解析】

1)證明△CDE≌△CBE,根據(jù)全等三角形的性質(zhì)得到EDEB,∠DEC=∠BEC,根據(jù)平行線的性質(zhì)、等腰三角形的判定定理得到DEDF,根據(jù)菱形的判定定理證明;

2)根據(jù)矩形的性質(zhì)得到∠BGD90°,DGAB5,ADBG,根據(jù)勾股定理求出GC,求出AD,根據(jù)勾股定理列方程求出AE,根據(jù)正切的定義計(jì)算,得到答案.

解:(1)證明:∵CE平分∠DCB,

∴∠DCE=∠BCE,

在△CDE和△CBE中,

∴△CDE≌△CBESAS),

EDEB,∠DEC=∠BEC,

DF//AB,

∴∠DFE=∠BEC,

∴∠DFE=∠DEC

DEDF,

DFBE,又DF//AB,DEDF,

∴四邊形DEBF為菱形;

2)∵AD//BC,AB//DF,

∴四邊形ABGD為平行四邊形,

∵∠A90°,

∴四邊形ABGD為矩形,

∴∠BGD90°,DGAB5,ADBG,

RtDGC中,GC12

ADBGBCGC13121,

設(shè)AEx,則DEBE5x,

RtADE中,DE2AE2+AD2,即(5x)2x2+12

解得,x

tanAED

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),與射線BC重合時(shí)就停止旋轉(zhuǎn),射線BD與線段AC相交于點(diǎn)D,點(diǎn)M是線段BD的中點(diǎn).

1)求線段BC的長;

2)①當(dāng)點(diǎn)D與點(diǎn)A、點(diǎn)C不重合時(shí),過點(diǎn)DDEAB于點(diǎn)E,DFBC于點(diǎn)F,連接ME,MF,在射線BD旋轉(zhuǎn)的過程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請說明理由.

②在①的條件下,連接EF,直接寫出△EFM面積的最小值______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】貨車和轎車分別從甲、乙兩地同時(shí)出發(fā),沿同一公路相向而行.轎車出發(fā)2.4h后休息,直至與貨車相遇后,以原速度繼續(xù)行駛.設(shè)貨車出發(fā)xh后,貨車、轎車分別到達(dá)離甲地y1kmy2km的地方,圖中的線段OA、折線BCDE分別表示y1y2x之間的函數(shù)關(guān)系.

(1)求點(diǎn)D的坐標(biāo),并解釋點(diǎn)D的實(shí)際意義;

(2)求線段DE所在直線的函數(shù)表達(dá)式;

(3)當(dāng)貨車出發(fā)________h時(shí),兩車相距200km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)軸的垂線交直線于點(diǎn),過點(diǎn)作直線的垂線,交軸于點(diǎn),過點(diǎn)軸的垂線交直線于點(diǎn),這樣依次下去,得到,…,其面積分別記為,…,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,,點(diǎn)分別是的中點(diǎn),連接.

(1)探索發(fā)現(xiàn):

1中,的值為_____________;的值為_________.

(2)拓展探究

若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明.

(3)問題解決

當(dāng)旋轉(zhuǎn)至三點(diǎn)在同一直線時(shí),直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,把45°的直三角板的直角頂點(diǎn)E放在邊長為6的正方形ABCD的一邊BC上,直三角板的一條直角邊經(jīng)過點(diǎn)D,以DE為一邊作矩形DEFG,且GF過點(diǎn)A,得到圖1

1)求矩形DEFG的面積;

2)若把正方形ABCD沿著對角線AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一個45°角的頂點(diǎn)與等腰直角三角形ABC的直角頂點(diǎn)B重合,直三角板夾這個45°角的兩邊分別交CACA的延長線于點(diǎn)H、P,得到圖2.猜想:CH、PA、HP之間的數(shù)量關(guān)系,并說明理由;

3)若把邊長為6的正方形ABCD沿著對角線AC剪掉一半得到等腰直角三角形ABC,點(diǎn)MRtABC內(nèi)一個動點(diǎn),連接MA、MBMC,設(shè)MA+MB+MCy,直接寫出 的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格,每個小正方形的邊長都為1,線段AB的端點(diǎn)落在格點(diǎn)上,要求畫一個四邊形,所作的四邊形為中心對稱圖形,同時(shí)滿足下列要求:

1)在圖1中畫出以AB為一邊的四邊形;

2)分別在圖2和圖3中各畫出一個以AB為一條對角線的四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:四邊形ABCD內(nèi)接于⊙O,對角線ACBD,⊙O的半徑為6cm,AD=4cmOEBC,垂足為E.則弦BC的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機(jī)器共同加工一批零件,一共用了小時(shí).在加工過程中乙機(jī)器因故障停止工作,排除故障后,乙機(jī)器提高了工作效率且保持不變,繼續(xù)加工.甲機(jī)器在加工過程中工作效率保持不變.甲、乙兩臺機(jī)器加工零件的總數(shù)(個)與甲加工時(shí)間之間的函數(shù)圖象為折線,如圖所示.

1)這批零件一共有   個,甲機(jī)器每小時(shí)加工   個零件,乙機(jī)器排除故障后每小時(shí)加工   個零件;

2)當(dāng)時(shí),求之間的函數(shù)解析式;

3)在整個加工過程中,甲加工多長時(shí)間時(shí),甲與乙加工的零件個數(shù)相等?

查看答案和解析>>

同步練習(xí)冊答案