CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線(xiàn),CA=CB,E,F(xiàn)分別是直線(xiàn)CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,
則BE_________CF;EF_________|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件_________,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).
解:(1)①∵∠BCA=90°,∠ α=90°,
∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,
∴∠CBE=∠ACF,
∵CA=CB,∠BEC=∠CFA;
∴△BCE≌△CAF,
∴BE=CF;EF=|BE﹣AF|.
②所填的條件是:∠α+∠BCA=180°.
證明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.
∵∠BCA=180°﹣∠α,
∴∠CBE+∠BCE=∠BCA.
又∵∠ACF+∠BCE=∠BCA,
∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,
∴△BCE≌△CAF(AAS)
∴BE=CF,CE=AF,
又∵EF=CF﹣CE,
∴EF=|BE﹣AF|.
(2)EF=BE+AF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線(xiàn),CA=CB.E,F(xiàn)分別是直線(xiàn)CD上兩點(diǎn),且∠BEC=∠CFA=∠α.

(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,
則BE
=
CF;EF
=
|BE-AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件
∠α+∠BCA=180°
,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線(xiàn),CA=CB.E,F(xiàn)分別是直線(xiàn)CD上兩點(diǎn),且∠BEC=∠CFA=∠α.

(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,
則BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件______,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省揚(yáng)州市邗江區(qū)東洲片九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線(xiàn),CA=CB.E,F(xiàn)分別是直線(xiàn)CD上兩點(diǎn),且∠BEC=∠CFA=∠α.

(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,
則BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件______,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年河北省石家莊市第41中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•臺(tái)州)CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線(xiàn),CA=CB.E,F(xiàn)分別是直線(xiàn)CD上兩點(diǎn),且∠BEC=∠CFA=∠α.

(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,
則BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件______,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案