【題目】如圖,矩形 ABCD 的對角線 AC BD 相交于點 O,CEBD,DEAC.

(1)求證:四邊形 OCED 為菱形

(2)AD=7,AB=4,求四邊形 OCED的面積.

【答案】(1)證明見解析;(2)S菱形OCED=14

【解析】分析:(1)根據(jù)已知條件CE∥BD,DE∥AC即可得四邊形DOCE是平行四邊形,再利用矩形的性質得出DO=CO,根據(jù)一組鄰邊相等的平行四邊形為矩形即可證得結論;(2)連接OE,證明四邊形AOED是平行四邊形,根據(jù)平行四邊形的性質求得OECD的長,再利用菱形的面積公式即可求得四邊形 OCED的面積.

詳解:

(1)DEOC,CEOD,

∴四邊形OCED是平行四邊形,

∵四邊形ABCD是矩形,

AC=BD.

OC=OD,

∴平行四邊形OCED是菱形.

(2)如圖,連接OE,

∵在菱形OCED中,OECD,

又∵ADCD,OEAD,

DEAC,OEAD,

∴四邊形AOED是平行四邊形,

OE=AD=7,

S菱形OCED=OEDC=×4×7=14.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合題
(1)
.
(2)解分式方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點A在x軸上,頂點C在y軸上,B(4,3),連接OB,將△OAB沿直線OB翻折,得△ODB,OD與BC相交于點E,若雙曲線 經過點E,則k= ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年11月讀書節(jié),深圳市統(tǒng)計某學校九年級學生讀書狀況,制作了兩幅不完整的統(tǒng)計圖如圖所示.

(1)x的值為 ,參加調查的總人數(shù)為 ;

(2)補全條形統(tǒng)計圖

(3)若全市有6.7萬學生,則看3本及3本書以上的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F.已知AB=4,BC=6,F=55°,求線段EC的長和∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)中y=ax2+bx﹣3的x、y滿足表:

x

﹣1

0

1

2

3

y

0

﹣3

﹣4

﹣3

m


(1)求該二次函數(shù)的解析式;
(2)求m的值并直接寫出對稱軸及頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線軸、軸分別交于點、點,與雙曲線 交于、兩點,分別過點、點軸,軸,垂足分別為點、點,

(1)求線段的長;

(2)若

①求直線的解析式;

②請你判斷線段與線段的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案