△ABC中,AC=13,BC=15,高CD=12,則其面積為

[  ]

A.84
B.168
C.24
D.84或24
答案:D
解析:

有兩種情況,分別如圖1和圖2所示:

如圖1:在Rt△ACD中,根據(jù)勾股定理,AD=5,同理,在Rt△BCD中,BD=9.

則AB=AD+BD=14.∴△ABC的面積=AB·CD=84;

當(dāng)△ABC形狀如圖2時,AB=BD-AD=4,△ABC的面積=AB·CD=24.

選D.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:[名校聯(lián)盟]2013屆重慶市重慶一中九年級下學(xué)期定時作業(yè)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點在第二象限,A(2,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達(dá)A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.

(1)求折痕EF的長;
(2)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時,另有一動點H與四邊形BCFE同時出發(fā),以每秒個單位長度從點A沿射線AC運動,試求出當(dāng)t為何值時,△HE1E為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇興化市安豐中學(xué)八年級下學(xué)期第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(不包括射線的端點).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:

(1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明;
(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長;若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆江蘇省蘇州市高新區(qū)八年級上學(xué)期期中測試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在△ABC中,AC=BC=2,∠ACB=90°,D是BC邊的中點,E是AB上一動點,則EC+ED的最小值是   

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(解析版) 題型:解答題

已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.

求證:(1)AD=BD;

(2)DF是⊙O的切線.

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市靖江外國語學(xué)校中考二模數(shù)學(xué)卷(解析版) 題型:填空題

如圖,△ABC中,ACBC,把△ABC沿AC翻折,點B落在點D處,連接BD,若∠ACB=100°,則∠CBD=_________°

 

查看答案和解析>>

同步練習(xí)冊答案