【題目】用配方法把二次函數(shù)y=l+2x-x2化為y=a(x-h)2+k的形式,作出它的草圖,回答下列問題.
(1)求拋物線的頂點坐標(biāo)和它與x軸的交點坐標(biāo);
(2)當(dāng)x取何值時,y隨x的增大而增大?
(3)當(dāng)x取何值時,y的值大于0?
【答案】y=-(x-1)2+2(1)頂點坐標(biāo)為(1,2),與x軸的兩個交點坐標(biāo)分別為(1-,0),(1+,0)(2)當(dāng)x<1時,y隨x的增大而增大.(3)當(dāng)l-<x<1+時,y的值大于0
【解析】分析:(1)利用配方法得到y=-(x-1)+2,則根據(jù)二次函數(shù)的性質(zhì)可得到拋物線的頂點坐標(biāo);再利用拋物線與x軸的交點問題,通過解方程-(x-1)+2=0可得到它與x軸的交點坐標(biāo);(2)根據(jù)二次函數(shù)的性質(zhì)求解;
(3)有(1)得到拋物線與x軸的交點坐標(biāo),然后寫出函數(shù)圖象在x軸下方所對應(yīng)的自變量的值即可.
本題解析:(1)y=1+2xx=x+2x+1=(x1)+2,
所以拋物線的頂點坐標(biāo)為(1,2);
當(dāng)y=0時,(x1)+2=0,解得,則拋物線與x軸的交點坐標(biāo)為(1,0)或(1+,0),
如圖,
(2)當(dāng)x<1時,y隨x的增大而增大.
(3)當(dāng)l-<x<1+時,y的值大于0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個單位,所得新拋物線與x軸正半軸交于點B,與y軸交于點C,頂點為D.求:(1)點B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=3x+3與x軸交于C點,與y軸交于A點,B點在x軸上,△OAB是等腰直角三角形.
(1)求過A、B、C三點的拋物線的解析式;
(2)若直線CD∥AB交拋物線于D點,求D點的坐標(biāo);
(3)若P點是拋物線上的動點,且在第一象限,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)和△PAB的最大面積;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關(guān)系:
日銷售單價x(元) | 3 | 4 | 5 | 6 |
日銷售量y(個) | 20 | 15 | 12 | 10 |
(1)猜測并確定y與x之間的函數(shù)關(guān)系式,并畫出圖象;
(2)設(shè)經(jīng)營此賀卡的銷售利潤為W元,求出W與x之間的函數(shù)關(guān)系式,
(3)若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當(dāng)日銷售單價x定為多少時,才能獲得最大日銷售利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形中,,,的垂直平分線分別交、于點、,垂足為.
(1)如圖,連接、.求證四邊形為菱形,并求的長;
(2)如圖,動點、分別從、兩點同時出發(fā),沿和各邊勻速運動一周.即點自→→→停止,點自→→→停止.在運動過程中,
①已知點的速度為每秒5,點的速度為每秒4,運動時間為秒,當(dāng)、、、四點為頂點的四邊形是平行四邊形時,求的值.
②若點、的運動路程分別為、(單位:,),已知、、、四點為頂點的四邊形是平行四邊形,寫出與滿足的數(shù)量關(guān)系式.(直接寫出答案,不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點E是AC的一點,連接EB,過點A做AM⊥BE,垂足為M,AM與BD相交于點F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關(guān)系為 ;
(2)拓展:如圖(2),若點E在AC的延長線上,AM⊥BE于點M,AM、DB的延長線相交于點F,其他條件不變,(1)的結(jié)論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩位同學(xué)將一個二次三項式分解因式,一位同學(xué)因看錯了一次項的系數(shù)而分解成,另一位同學(xué)因看錯了常數(shù)而分解成.
(1)求原多項式;
(2)將原多項式進(jìn)行分解因式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)學(xué)習(xí)中,及時對知識進(jìn)行歸納和整理是改善學(xué)習(xí)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組).一元一次不等式和一次函數(shù)后,對相關(guān)知識進(jìn)行了歸納整理.
(1)例如,他在同一個直角坐標(biāo)系中畫出了一次函數(shù)y=x+2和y=-x+4的圖像(如圖1),并作了歸納:
請根據(jù)圖1和以上方框中的內(nèi)容,在下面數(shù)字序號后寫出相應(yīng)的結(jié)論:
① ;② ;
③ ;④ ;
(2)若已知一次函數(shù)y=k1x+b1和y=kx+b的圖像(如圖2),且它們的交點C的坐標(biāo)為(1,3),那么不等式kx+b≥k1x+b1的解集 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com