【題目】如圖,正方形網格中,每個小正方形的邊長為1,網格中有一個格點△ABC(即三角形的頂點都在格點上)
(1)在圖中作出△ABC關于直線1對稱的△A1B1C1;(要求:A與A1、B與B1、C與C1相對應);
(2)在第(1)問的結果下,連結BB1,CC1,求四邊形BB1C1C的面積;
(3)在圖中作出△ABC關于點C成中心對稱的△A2CB2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點F.
(1)填空:∠ADC= 度;
(2)當∠C=20°時,判斷DE與AC的位置關系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C表示某旅游景區(qū)三個纜車站的位置,線段AB,BC表示連接纜車站的鋼纜,已知A,B,C三點在同一鉛直平面內,它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車線路,需要從A到C直線架設一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
【答案】鋼纜AC的長度為1 000米.
【解析】試題分析:過點A作AE⊥CC′于點E,交BB′于點F,過點B作BD⊥CC′于點D,分別求出AE、CE,利用勾股定理求解AC即可.
試題解析:過點A作AE⊥CC′于點E,交BB′于點F,過點B作BD⊥CC′于點D,
則△AFB、△BDC、△AEC都是直角三角形,四邊形AA′B′F,BB′C′D和BFED都是矩形,
∴BF=BB′-B′F=BB′-AA′=310-110=200,
CD=CC′-C′D=CC′-BB′=710-310=400,
∵i1=1:2,i2=1:1,
∴AF=2BF=400,BD=CD=400,
又∵EF=BD=400,DE=BF=200,
∴AE=AF+EF=800,CE=CD+DE=600,
∴在Rt△AEC中,AC=(米).
答:鋼纜AC的長度是1000米.
考點:解直角三角形的應用-坡度坡角問題.
【題型】解答題
【結束】
24
【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;
(3)如圖②,連接OD交AC于點G,若,求sinE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,將△ABD沿AD折疊得到△AED,點E落在CD上,∠B=50°,∠C=30°.
(1)填空:∠BAD= 度;
(2)求∠CAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD
(3)畫出BC邊上的高線AE
(4)點為方格紙上的格點(異于點),若,則圖中的格點共有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,為面向鄉(xiāng)鎮(zhèn)市場,蘇寧電器分店決定用76000元購進室內用、室外用節(jié)能燈,已知這兩種類型的節(jié)能燈進價、售價如下:
價格 類型 | 進價(元/盞) | 售價(元/盞) |
室內用節(jié)能燈 | 40 | 58 |
室外用節(jié)能燈 | 50 | 70 |
(1)若該分店共購進節(jié)能燈1700盞,問購進的室內用、室外用節(jié)能燈各多少盞?
(2)若該分店將進貨全部售完后獲利要不少于32000元,問至少需要購進多少盞室內用節(jié)能燈?
(3)掛職鍛煉的大學生村官王祥自酬了4650元在該分店購買這兩種類型的節(jié)能燈若干盞,分發(fā)給村民使用,其中室內用節(jié)能燈盞數(shù)不少于室內用節(jié)能燈盞數(shù)的2倍,問王祥最多購買室外用節(jié)能燈多少盞?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經過2 020次變換后,正方形ABCD的對角線交點M的坐標變?yōu)?/span>_________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com