【題目】甲、乙兩車從城出發(fā)勻速行駛至城.在整個行駛過程中,甲、乙兩車離城的距離(千米)與甲車行駛的時間(小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:
①兩城相距千米;
②乙車比甲車晚出發(fā)小時,卻早到小時;
③乙車出發(fā)后小時追上甲車;
④當甲、乙兩車相距千米時,
其中正確的結(jié)論有( )
A.個B.個C.個D.個
【答案】B
【解析】
觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得甲、乙兩車離開A城的距離y與時間t的關(guān)系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.
解:由圖象可知A、B兩城市之間的距離為300km,甲行駛的時間為5小時,而乙是在甲出發(fā)1小時后出發(fā)的,且乙用時3小時,即比甲早到1小時,故①②都正確;
設(shè)甲車離開A城的距離y與t的關(guān)系式為y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
設(shè)乙車離開A城的距離y與t的關(guān)系式為y乙=mt+n,
把(1,0)和(4,300)代入可得,解得,
∴y乙=100t-100,
令y甲=y乙可得:60t=100t-100,解得t=2.5,
即甲、乙兩直線的交點橫坐標為t=2.5,
此時乙出發(fā)時間為1.5小時,即乙車出發(fā)1.5小時后追上甲車,故③錯誤;
令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,
當100-40t=50時,可解得t=,
當100-40t=-50時,可解得t=,
令y甲=50,解得t=,令y甲=250,解得t=,
∴當t=時,y甲=50,此時乙還沒出發(fā),此時相距50千米,
當t=時,乙在B城,此時相距50千米,
綜上可知當t的值為或或或時,兩車相距50千米,故④錯誤;
綜上可知正確的有①②共兩個,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀題:在現(xiàn)今“互聯(lián)網(wǎng)+”的時代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的密碼就很有必要了。有一種用“因式分解”法產(chǎn)生的密碼,方便記憶,其原理是:將一個多項式分解因式,如多項式:因式分解的結(jié)果為,當時,,此時可以得到數(shù)字密碼171920.
(1)根據(jù)上述方法,當時,對于多項式分解因式后可以形成哪些數(shù)字密碼?(寫出三個).
(2)若一個直角三角形的周長是24,斜邊長為10,其中兩條直角邊分別為,求出一個由多項式分解因式后得到的密碼(只需一個即可).
(3)若多項式因式分解后,利用本題的方法,當時可以得到其中一個密碼為2434,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)當t為何值時△COM≌△AOB,請直接寫出此時t值和M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系xOy中,A(4,0)、B(0,3)、C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點逆時針旋轉(zhuǎn)90°后,I的對應(yīng)點I′的坐標為( )
A. (-2,3) B. (-3,2) C. (3,-2) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心O作OE∥AC,交BC于點E,連接DE.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)求證:2DE2=CDOE;
(3)若tanC=,DE=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標為(6,n)。線段OA=5,E為x軸上一點,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某瓜農(nóng)采用大棚栽培技術(shù)種植了一畝地的良種西瓜,這畝地產(chǎn)西瓜600個,在西瓜上市前該瓜農(nóng)隨機摘下了10個成熟的西瓜,稱重如下:
西瓜質(zhì)量(單位:千克) | 5.4 | 5.3 | 5.0 | 4.8 | 4.4 | 4.0 |
西瓜數(shù)量(單位:個) | 1 | 2 | 3 | 2 | 1 | 1 |
(1)這10個西瓜質(zhì)量的眾數(shù)和中位數(shù)分別是 和 ;
(2)計算這10個西瓜的平均質(zhì)量,并根據(jù)計算結(jié)果估計這畝地共可收獲西瓜約多少千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com