【題目】當(dāng)x滿足條件 時(shí),求出方程x2﹣2x﹣4=0的根.

【答案】解:由 求得 ,則2<x<4.

解方程x2﹣2x﹣4=0可得x1=1+ ,x2=1﹣ ,∵2< <3,∴3<1+ <4,符合題意

∴x=1+


【解析】分別解出不等式中的每一個(gè)不等式,然后利用大小小大中間找得出求出不等式組的解積;然后解出方程x2﹣2x﹣4=0的解,然后根據(jù)x的取值范圍判斷即可。
【考點(diǎn)精析】掌握配方法和一元一次不等式組的解法是解答本題的根本,需要知道左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個(gè)不等式組無解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠BOPOP上點(diǎn)C,點(diǎn)A(A的左側(cè)),嘉嘉進(jìn)行如下作圖:

以點(diǎn)O為圓心,OC為半徑畫弧,交OB于點(diǎn)D,連接CD

以點(diǎn)A為圓心,OC為半徑畫弧MN,交AP于點(diǎn)M

以點(diǎn)M為圓心,CD為半徑畫弧,交MN于點(diǎn)E,連接ME,作射線AE

如圖所示,則下列結(jié)論不成立的是(  )

A. CDEM B. AEOB C. ODC=∠AEM D. OAE=∠BDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.

(1)將△AOC經(jīng)過怎樣的圖形變換可以得到△BOD?
(2)若 的長(zhǎng)為πcm,OD=3cm,求圖中陰影部分的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量校園內(nèi)一棵不可攀的樹的高度,數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索實(shí)踐:根據(jù)《物理學(xué)》中光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如圖的測(cè)量方案:把鏡子放在離樹(AB)9米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹梢頂點(diǎn)A,再用皮尺量得DE=2.7米,觀察者目高CD=1.8米,則樹(AB)的高度為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測(cè)量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:今有池方一丈,葭生其中央,出水一尺引葭赴岸,適與岸齊.問水深、葭長(zhǎng)各幾何?”

譯文:“今有正方形水池邊長(zhǎng)為1丈,有棵蘆葦生長(zhǎng)在它長(zhǎng)出水面的部分為1將蘆葦?shù)闹醒耄虺匕稜恳,恰好與水岸齊接問水深,蘆葦?shù)拈L(zhǎng)度分別是多少尺?”(備注:1=10)

如果設(shè)水深為那么蘆葦長(zhǎng)用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.

(1)證明不論E、F在BC.CD上如何滑動(dòng),總有BE=CF;
(2)當(dāng)點(diǎn)E、F在BC.CD上滑動(dòng)時(shí),分別探討四邊形AECF的面積和△CEF的周長(zhǎng)是否發(fā)生變化?如果不變,求出這個(gè)定值;如果變化,求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小彬買了A、B兩種書,單價(jià)分別是18元、10元.

1)若兩種書共買了10本付款172元,求每種書各買了多少本?

2)買10本時(shí)付款可能是123元嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)進(jìn)行社會(huì)調(diào)查,隨機(jī)抽查了某個(gè)地區(qū)的20個(gè)家庭的收入情況,并繪制了統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖給出的信息回答:

(1)填寫完成下表:

年收入(萬(wàn)元)

0.6

0.9

1.0

1.1

1.2

1.3

1.4

9.7

戶  數(shù)

1

1

2

4

20個(gè)家庭的年平均收入為   萬(wàn)元;

(2)樣本中的中位數(shù)是   萬(wàn)元,眾數(shù)是   萬(wàn)元;

(3)在平均數(shù)、中位數(shù)兩數(shù)中,   更能反映這個(gè)地區(qū)家庭的年收入水平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案