【題目】如圖所示,菱形ABOC,其一邊OB在x軸上,將菱形ABOC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)75°至FBDE的位置,若BO=2,∠A=120°,則點(diǎn)E的坐標(biāo)為( 。
A. ()B. ()C. ()D. ( )
【答案】A
【解析】
過(guò)C作CG⊥OB于G,過(guò)E作EH⊥OB于H,根據(jù)菱形的性質(zhì)得到∠ABO=60°,解直角三角形即可得到結(jié)論.
解:過(guò)C作CG⊥OB于G,過(guò)E作EH⊥OB于H,
在菱形ABOC中,∵∠A=120°,AC∥BO,
∴∠ABO=60°,
∴∠CBO=30°,
∵BO=CO=2,∠COG=60°,
在Rt△COG中,OG=OCcos60°=1,
∴BG=1+2=3,
在Rt△BCG中,BC=,
∵∠HBE=75°﹣30°=45°,
在Rt△BHE中,BH=HE=BEsin45°=,
∴OH=,
∴點(diǎn)E的坐標(biāo)為(,).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校圖書(shū)館為了滿(mǎn)足同學(xué)們閱讀課外書(shū)的需求,計(jì)劃購(gòu)進(jìn)甲、乙兩種圖書(shū)共100套,其中甲種圖書(shū)每套120元,乙種圖書(shū)每套80元.設(shè)購(gòu)買(mǎi)甲種圖書(shū)的數(shù)量套.
(1)按計(jì)劃用11000元購(gòu)進(jìn)甲、乙兩種圖書(shū)時(shí),問(wèn)購(gòu)進(jìn)這甲、乙兩種圖書(shū)各多少套?
(2)若購(gòu)買(mǎi)甲種圖書(shū)的數(shù)量要不少于乙種圖書(shū)的數(shù)量的,購(gòu)買(mǎi)兩種圖書(shū)的總費(fèi)用為元,求出最少總費(fèi)用.
(3)圖書(shū)館在不增加購(gòu)買(mǎi)數(shù)量的情況下,增加購(gòu)買(mǎi)丙種圖書(shū),要求甲種圖書(shū)與丙種圖書(shū)的購(gòu)買(mǎi)費(fèi)用相同.丙種圖書(shū)每套100元,總費(fèi)用比(2)中最少總費(fèi)用多出1240元,請(qǐng)直接寫(xiě)出購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與雙曲線的另一交點(diǎn)為D點(diǎn),求△ODB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點(diǎn)D,E,過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)分別延長(zhǎng)CB,F(xiàn)D,相交于點(diǎn)G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱(chēng).
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點(diǎn)C為線段AP的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,以BC為直徑的⊙O中,點(diǎn)A、E為圓周上兩點(diǎn),過(guò)點(diǎn)A作AD⊥BC,垂足為D,作AF⊥CE的延長(zhǎng)線于點(diǎn)F,垂足為F,連接AC、AO,已知BD=EF,BC=4.
(1)求證:∠ACB=∠ACF;
(2)當(dāng)∠AEF= °時(shí),四邊形AOCE是菱形;
(3)當(dāng)AC= 時(shí),四邊形AOCE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P是以C(﹣1,0)為圓心,1為半徑的圓上一點(diǎn),連接PA,PB,則△PAB面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點(diǎn)D為BC的中點(diǎn),點(diǎn)E在AC上,將△CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC.以C為圓心,CB的長(zhǎng)為半徑作弧,交AB于點(diǎn)D.分別以B、D為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E.作射線CE交AB于點(diǎn)M.分別以A、C為圓心,CM、AM的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)N.連接AN、CN
(1)求證:AN⊥CN
(2)若AB=5,tanB=3,求四邊形AMCN的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com