【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實(shí)“兩點(diǎn)確定一條直線”來解釋的有( )
①用兩顆釘子就可以把木條固定在墻上
②把筆尖看成一個(gè)點(diǎn),當(dāng)這個(gè)點(diǎn)運(yùn)動(dòng)時(shí)便得到一條線;
③把彎曲的公路改直,就能縮短路程;
④植樹時(shí),只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上。
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
【答案】B
【解析】
直接利用直線的性質(zhì)以及兩點(diǎn)確定一條直線的性質(zhì)分析得出答案.
(1)用兩個(gè)釘子就可以把木條固定在墻上,根據(jù)是兩點(diǎn)確定一條直線;
(2)把筆尖看成一個(gè)點(diǎn),當(dāng)這個(gè)點(diǎn)運(yùn)動(dòng)時(shí)便得到一條線,是根據(jù)點(diǎn)動(dòng)成線;
(3)把彎曲的公路改直,就能縮短路程,根據(jù)是兩點(diǎn)之間線段最短.
(4)植樹時(shí),只要確定兩棵樹的位置,就能確定同一行樹所在的直線,根據(jù)是兩點(diǎn)確定一條直線;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一水果店主分兩批購進(jìn)某一種水果,第一批所用資金為2400元,因天氣原因,水果漲價(jià),第二批所用資金是2700元,但由于第二批單價(jià)比第一批單價(jià)每箱多10元,以致購買的數(shù)量比第一批少25%.
(1)該水果店主購進(jìn)第一批這種水果的單價(jià)是多少元?
(2)該水果店主計(jì)兩批水果的售價(jià)均定為每箱40元,實(shí)際銷售時(shí)按計(jì)劃無損耗售完第一批后,發(fā)現(xiàn)第二批水果品質(zhì)不如第一批,于是該店主將售價(jià)下降a%銷售,結(jié)果還是出現(xiàn)了20%的損耗,但這兩批水果銷售完后仍賺了不低于1716元,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長度為5的動(dòng)線段分別與坐標(biāo)系橫軸、縱軸的正半軸交于點(diǎn)、點(diǎn),點(diǎn)和點(diǎn)關(guān)于對(duì)稱,連接,過點(diǎn)作軸的垂線段,交軸于點(diǎn)
(1)移動(dòng)點(diǎn),發(fā)現(xiàn)在某一時(shí)刻,和以點(diǎn)為頂點(diǎn)的三角形相似,求這一時(shí)刻點(diǎn)的坐標(biāo);
(2)移動(dòng)點(diǎn),當(dāng)時(shí)求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點(diǎn),F為BC延長線上一點(diǎn),CE=CF.
(1)△DCF可以看作是△BCE繞點(diǎn)C旋轉(zhuǎn)某個(gè)角度得到的嗎?
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的圖象有可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E為AD中點(diǎn),CE延長線交BA延長線于點(diǎn)F.
(1)求證:CD=AF;
(2)若BC=2CD,求證:∠F=∠BCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形和分別是邊長為和的正方形.
(1)用含和的代數(shù)式表示圖中三角形的面積.
(2)用用和的代數(shù)式表示圖中陰影部分的面積.
(3)小軍計(jì)算出當(dāng),時(shí)的陰影部分面積,與小明計(jì)算的當(dāng),時(shí)的陰影部分面積相等,為什么呢?請(qǐng)說明理由,并求出此時(shí)的陰影部分面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com