解方程:
(1)x(x-2)+(x-2)=0;
(2)x2-4x+4=5.
【答案】分析:(1)方程左邊提公因式得到(x-2)(x+1)=0,原方程轉化為x-2=0或x+1=0,然后解一次方程即可;
(2)方程左邊利用完全平方公式分解后得到(x-2)2=5,然后利用直接開平方法求解.
解答:解:(1)(x-2)(x+1)=0,
∴x-2=0或x+1=0,
∴x1=2,x2=-1;

(2)(x-2)2=5,
∴x-2=±,
∴x1=2+,x2=2-
點評:本題考查了解一元二次方程-因式分解法:先把方程右邊變?yōu)?,再把方程左邊因式分解,這樣原方程可化為兩個一元一次方程,然后解一次方程得到原方程的解.也考查了配方法解一元二次方程.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當x≥0時,原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當x<o時,原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算下列各題:
(1)先化簡再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習冊答案