如圖,BD是?ABCD的對(duì)角線,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.
求證:△ABE≌△CDF.

【答案】分析:首先根據(jù)角平分線性質(zhì)與平行線性質(zhì)證明∠ABD=∠CDB,再根據(jù)平行四邊形性質(zhì)證出CD=AB,∠A=∠C,可利用ASA定理判定△ABE≌△CDF.
解答:證明:∵∠ABD的平分線BE交AD于點(diǎn)E,
∴∠ABE=∠ABD,
∵∠CDB的平分線DF交BC于點(diǎn)F,
∴∠CDF=∠CDB,
∵AB∥CD,
∴∠ABD=∠CDB,
∴∠CDF=∠ABE,
∵四邊形ABCD是平行四邊形,
∴CD=AB,∠A=∠C,
,
∴△ABE≌△CDF(ASA),
點(diǎn)評(píng):此題主要考查了角平分線性質(zhì)與平行線性質(zhì),平行四邊形性質(zhì)以及全等三角形的判定,熟練掌握各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,BD是△ABC的角平分線.已知∠1=∠A,∠2=∠3,求△ABC的各個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD=36,則S△BCD=
45
45

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD是△ABC的角平分線,且BD=BC=AD.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)請(qǐng)求出△ABC各角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD是△ABC的中線,若△ABD的面積是10,則△ABC的面積是
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案