【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是線段BM,CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當AD∶AB=__________時,四邊形MENF是正方形(只寫結(jié)論,不需證明).
【答案】(1)見解析;(2)四邊形MENF是菱形.(3)2:1.
【解析】試題分析:(1)根據(jù)SAS即可證明△ABM≌△DCM;(2)由(1)得出BM=CM,再根據(jù)三角形的中位線定理得出EN=MF,EM=FN,先證四邊形MENF是平行四邊形,再證ME=MF,從而可得平行四邊形MENF是菱形;(3)當AD∶AB=2∶1時,四邊形MENF是正方形.可以利用正方形的性質(zhì)得到MA=AB=MD,從而確定AD:AB的值.
試題解析:(1)證明:∵四邊形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M為AD中點,∴AM=DM,
在△ABM和△DCM,
∴△ABM≌△DCM(SAS);
答:四邊形MENF是菱形.
證明:∵N、E、F分別是BC、BM、CM的中點,
∴NE∥CM,,
∴NE=FM,NE∥FM,∴四邊形MENF是平行四邊形,
∵△ABM≌△DCM,
∴BM=CM,
∵E、F分別是BM、CM的中點,
∴ME=MF,
∴平行四邊形MENF是菱形;
解:當AD∶AB=2∶1時,四邊形MENF是正方形.理由是:
∵四邊形MENF是正方形,
∴∠EMF=90°,
由(1)知:Rt△ABM≌Rt△DCM(SAS),
∴∠AMB=∠DMC=45°,
此時MA=MD=DC,
∴AD=2DC,即AD∶AB=2∶1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖所示,甲、乙、丙三個人做傳球游戲,游戲規(guī)則如下:甲將球傳給乙,乙將球立刻傳給丙,然后丙又立刻將球傳給甲.若甲站在∠AOB內(nèi)的P點,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的傳球速度相同.問乙和丙必須站在何處,才能使球從甲到乙、乙到丙、最后丙到甲這一輪所用的時間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(-3,5),B(-2,1),C(-1,3).
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)畫出△A1B1C1沿x軸向右平移4個單位長度后得到的△A2B2C2;
(3)如果AC上有一點M(a,b)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點M2的坐標是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E.
(1)若B、C在DE的同側(cè)(如圖1所示)且AD=CE,AB與AC垂直嗎?為什么?
(2)若B、C在DE的兩側(cè)(如圖2所示),其他條件不變,AB與AC是否垂直嗎?若垂直請給出證明;若不垂直,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各數(shù)中互為相反數(shù)的是( )
A.+(—5)與—5
B.—(+5)與—5
C.—(—5)與+(—5)
D.—(+5)與—|—5|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b為有理數(shù),a>0,b<0,且|a|<|b|,則a,b,-a,︱b︱的大小關(guān)系是( )
A.b<-a<︱b︱<a
B.b<-a<a<︱b︱
C.b<︱b︱<-a<a
D.-a<︱b︱<b<a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明鍛煉健身,從A地勻速步行到B地用時25分鐘.若返回時,發(fā)現(xiàn)走一小路可使A、B兩地間路程縮短200米,便抄小路以原速返回,結(jié)果比去時少用2.5分鐘.
(1)求返回時A、B兩地間的路程;
(2)若小明從A地步行到B地后,以跑步形式繼續(xù)前進到C地(整個鍛煉過程不休息).據(jù)測試,在他整個鍛煉過程的前30分鐘(含第30分鐘),步行平均每分鐘消耗熱量6卡路里,跑步平均每分鐘消耗熱量10卡路里;鍛煉超過30分鐘后,每多跑步1分鐘,多跑的總時間內(nèi)平均每分鐘消耗的熱量就增加1卡路里.測試結(jié)果,在整個鍛煉過程中小明共消耗904卡路里熱量.問:小明從A地到C地共鍛煉多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com