【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AGBC,點EA出發(fā)沿射線AG1cm/s的速度與運動,同時點F從點B出發(fā)沿射線BC2cm/s的速度運動,設運動時間為t(s).

(1)連接EF,當EF經(jīng)過AC邊的中點D是,求證ADE≌△CDF;

(2)填空題:①當t________s時,四邊形ACFE是菱形;

②當t________s時,以A,C,FE為頂點的四邊形為平行四邊形.

【答案】(1)證明見解析(2)①t=6st=26s

【解析】

1)由題意得到AD=CD,再由AGBC平行,利用兩直線平行內(nèi)錯角相等得到兩對角相等,利用AAS即可得證;
2)①若四邊形ACFE是菱形,則有CF=AC=AE=6,由E的速度求出E運動的時間即可;
②分別從當點FC的左側(cè)時與當點FC的右側(cè)時去分析,由當AE=CF時,以AC、E、F為頂點四邊形是平行四邊形,可得方程,解方程即可求得答案;

1)證明:∵AGBC,
∴∠EAD=DCF,∠AED=DFC,
DAC的中點,
AD=CD,
∵在ADECDF中,
,
∴△ADE≌△CDFAAS);
2)①解:若四邊形ACFE是菱形,則有CF=AC=AE=6,
則此時的時間t=6÷1=6s);
②當點FC的左側(cè)時,根據(jù)題意得:AE=tcm,BF=2tcm
CF=BC-BF=6-2tcm),
AGBC,
∴當AE=CF時,四邊形AECF是平行四邊形,
t=6-2t
解得:t=2;
當點FC的右側(cè)時,根據(jù)題意得:AE=tcmBF=2tcm,
CF=BF-BC=2t-6cm),
AGBC
∴當AE=CF時,四邊形AEFC是平行四邊形,
t=2t-6,
解得:t=6;
綜上可得:當t=26s時,以A、C、E、F為頂點四邊形是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖所示,圖象過點(,),對稱軸為直線,下列結(jié)論:(1;(2;(3;(4)若點(,),(,),(,)在該函數(shù)圖象上,,其中正確的結(jié)論有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種文具,進價為5元/件.售價為6元/件時,當天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當天的銷售量就減少5件.設當天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當天銷售利潤為元.

1)求的函數(shù)關系式(不要求寫出自變量的取值范圍);

2)要使當天銷售利潤不低于240元,求當天銷售單價所在的范圍;

3)若每件文具的利潤不超過,要想當天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果兩個二次函數(shù)的圖象關于y軸對稱,我們就稱這兩個二次函數(shù)互為“關于y軸對稱二次函數(shù)”,如圖所示二次函數(shù)y1x2+2x+2y2x22x+2是“關于y軸對稱二次函數(shù)”.

1)直接寫出兩條圖中“關于y軸對稱二次函數(shù)”圖象所具有的共同特點.

2)二次函數(shù)y2x+22+1的“關于y軸對稱二次函數(shù)”解析式為   ;二次函數(shù)yaxh2+k的“關于y軸對稱二次函數(shù)”解析式為   ;

3)平面直角坐標系中,記“關于y軸對稱二次函數(shù)”的圖象與y軸的交點為A,它們的兩個頂點分別為BC,且BC6,順次連接點A,B,OC得到一個面積為24的菱形,求“關于y軸對稱二次函數(shù)”的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】盒子中裝有形狀、大小完全相同的3個小球,球上分別標有數(shù)字-1,1,2,從中隨機取出一個,其上的數(shù)字記為k,放回后再取一次,其上的數(shù)記為b,則函數(shù)y=kx+b是增函數(shù)的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=2,EAB的中點,FEC上一動點,PDF中點,連接PB,則PB的最小值是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與兩坐標軸共有兩個交點,則的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于給定的兩個函數(shù),任取自變量x的一個值,當x0時,它們對應的函數(shù)值互為相反數(shù);當x0時,它們對應的函數(shù)值相等,我們稱這樣的兩個函數(shù)互為相關函數(shù).例如:一次函數(shù)yx2,它的相關函數(shù)為

1)已知點A(﹣38)在一次函數(shù)yax5的相關函數(shù)的圖象上,求a的值;

2)已知二次函數(shù)y=﹣x2+4x1.當點Bm,2)在這個函數(shù)的相關函數(shù)的圖象上時,求m的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格,△ABC的頂點在網(wǎng)格上,在建立平面直角坐標系后,點B的坐標是(-1,-1)

(1)把△ABC向左平移10格得到,畫出;

(2)畫出關于x軸對稱的圖形;

(3)把△ABC繞點C順時針旋轉(zhuǎn)90°后得到,畫出,并寫出點的坐標.

查看答案和解析>>

同步練習冊答案