【題目】已知:平行四邊形,對角線點P為射線BC上一點,,(點M與點B分別在直線AP的兩側(cè)),且聯(lián)結(jié)MD.
(1)當點M在內(nèi)時,如圖一,設(shè)求關(guān)于的函數(shù)解析式.
(2)請在圖二中畫出符合題意得示意圖,并探究:圖中是否存在與相似的三角形?若存在,請寫出證明過程,若不存在,請說明理由
(3)當為等腰三角形時,求的長.
【答案】(1);(2),證明見解析;(3)7.5或3或27.
【解析】
(1)作AE⊥BC于E,先在Rt△ABC中運用勾股定理求出BC=15,再解Rt△ABE,得到AE=,BE=,然后在Rt△AEP中,利用勾股定理得AP2=PE2+AE2,即可求出y關(guān)于x的函數(shù)關(guān)系式;
(2)先由兩角對應相等的兩三角形相似證明出△APM∽△ACD,則AP:AC=AM:AD,即AP:AM=AC:AD,又由∠PAM=∠CAD,得出∠PAC=∠MAD,根據(jù)兩邊對應成比例且夾角相等的兩三角形相似即可得到△PAC∽△MAD;
(3)先由相似三角形的形狀相同,由(2)得出△APC為等腰三角形,再分兩種情況進行討論:①點M在平行四邊形內(nèi);②點M在平行四邊形外;又分兩種情況:(i)P在BC上,(ii)P在BC的延長線上.
解:(1)如圖,作AE⊥BC于E,
在Rt△ABC中,∵AB=9,AC=12,
∴BC=15,
∵△ABE∽△CBA,
∴BE=,AE=
∵BP= ,∴PE=,
在Rt△AEP中,
∴
(2) 存在,,
∵∠PAM=∠CAD,∠APM=∠ACD=90°,
∴△APM∽△ACD,
∴
∴
∵,
∴∠PAC=∠MAD,
∴
(3)∵△PAC∽△MAD,
∴當△AMD為等腰三角形時,△APC也為等腰三角形,
①當點M在平行四邊形內(nèi)時,如圖1.點P只能在EC上,
∵∠APC為鈍角,
∴∠PAC=∠PCA,
∴PC=PA,
又∵∠PAB=90°-∠PAC,∠B=90°-∠PCA,
∴∠PAB=∠B,∴PA=PB,
∴PA=PB=PC=BC=,
即BP=7.5;
②當點M在平行四邊形外時,
(i)若P在BC上,如圖2.點P只能在BE上,
∵AP<AC,AP<PC,
∴CA=CP=12,則BP=15-12=3;
(ii)若P在BC的延長線上,如圖3,
∵AP>AC,AP>PC,
∴CA=CP=12,則BP=15+12=27.
綜上可知,當△AMD為等腰三角形時,BP的長為7.5或3或27.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點,與y軸交于C點,B點與C點是直線y=x﹣3與x軸、y軸的交點.D為線段AB上一點.
(1)求拋物線的解析式及A點坐標.
(2)若點D在線段OB上,過D點作x軸的垂線與拋物線交于點E,求出點E到直線BC的距離的最大值.
(3)D為線段AB上一點,連接CD,作點B關(guān)于CD的對稱點B′,連接AB′、B′D
①當點B′落坐標軸上時,求點D的坐標.
②在點D的運動過程中,△AB′D的內(nèi)角能否等于45°,若能,求此時點B′的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線為正比例函數(shù)的圖象,點的坐標為,過點作軸的垂線交直線于點,以為邊作正方形;過點作直線的垂線,垂足為,交軸于點,以為邊作正方形;過點作軸的垂線,垂足為,交直線于點,以為邊作正方形,…,按此規(guī)律操作下所得到的正方形的面積是
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt中,∠ACB=90°,,AC=4;D是BC的延長線上一個動點,∠EDA=∠B,AE//BC.
(1)找出圖中的相似三角形,并加以證明;
(2)設(shè),,求關(guān)于的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)當為等腰三角形時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蜂蜜具有消食、潤肺、安神、美顏之功效,是天然的健康保健佳品.秋天即將來臨時,雪寶山土特產(chǎn)公司抓住商機購進甲、乙、丙三種蜂蜜,已知銷售每瓶甲蜂蜜的利潤率為10%,每瓶乙蜂蜜的利潤率為20%,每瓶丙蜂蜜的利潤率為30%.當售出的甲、乙、丙蜂蜜瓶數(shù)之比為1:3:1時,商人得到的總利潤率為22%;當售出的甲、乙、丙蜂蜜瓶數(shù)之比為3:2:1時,商人得到的總利潤率為20%.那么當售出的甲、乙、丙蜂蜜瓶數(shù)之比為5:6:1時,該公司得到的總利潤率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標;
(3)請畫出△ABC繞O逆時針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點A3、B3、C3坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在Rt中,,點是斜邊的中點,,且,于點,聯(lián)結(jié).
(1)求證: ;
(2)當時,求的值;
(3)在(2)的條件下,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com