【題目】某文具店出售、兩種文具.文具每套元,文具每套元,該店開展促銷活動,向客戶提供兩種優(yōu)惠方案:
①買一套文具送一套文具.
②文具和文具都按定價的付款.
現(xiàn)某客戶要到該店購買文具套,文具套()
()若該客戶按方案①購買需付款____________________元(用含的代數(shù)式表示);若該客戶按方案②購買需付款____________________元(用含的代數(shù)式表示)
()當(dāng)時,通過計算說明按哪種方案購買較為合算.
【答案】(1)3200+40x;3600+36x;(2) 當(dāng)x=30時,選擇方案①購買更合算
【解析】
(1)根據(jù)題中所給的兩種方案分別列出代數(shù)式即可;
(2)把x=30代入(1)中式子進行解答即可.
(1)該客戶按方案①購買需付款:200×20+(x-20)×40=3200+40x;
該客戶按方案②購買需付款:200×20×0.9+40x×0.9=3600+36x;
(2)當(dāng)x=30時,按方案①購買需付款:3200+40×30=4400(元);
按方案②購買需付款:3600+36×30=4680(元);
答:當(dāng)x=30時,選擇方案①購買更合算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買12臺節(jié)能新設(shè)備,現(xiàn)有甲乙兩種型號的設(shè)備可供選購,經(jīng)調(diào)查,購4臺甲比購3臺乙多用18萬元,購3臺甲比購4臺乙少用4萬元。
(1)求甲乙兩種設(shè)備的單價。
(2)該公司決定購買甲設(shè)備不少于5臺,購買資金不超過136萬元,你認為該公司有幾種購買方案?并直接寫出最省錢的購買方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DE⊥AB于點E,DF⊥AC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用工件槽(如圖1)可以檢測一種鐵球的大小是否符合要求,已知工件槽的兩個底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時,若同時具有圖1所示的A、B、E三個接觸點,該球的大小就符合要求.圖2是過球心O及A、B、E三點的截面示意圖,求這種鐵球的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亞奧理事會于年月3日在土庫曼斯坦阿什哈巴德舉行第屆代表大會,并在會上投票選出年第屆亞運會舉辦城市為杭州.個城市的國際標(biāo)準時間(單位:時)在數(shù)軸上表示如圖所示,那么北京時間年月日時應(yīng)是( ).
A.倫敦時間年月日時
B.巴黎時間年月日時
C.智利時間年月日時
D.曼谷時間年月日時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形 ABC (頂點是網(wǎng)格線交點的三角形)的頂點 A ,C 的坐標(biāo)分別是(-4 ,6) ,(-1,4) .
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出△ABC 關(guān)于 x 軸對稱的△A1B1C1 ;并直接寫出A1B1C1的坐標(biāo).
(3)請在 y 軸上求作一點 P ,使△PB1C 的周長最小,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意一個三角形的三個內(nèi)角的和是180°,如圖1,在ABC中,∠ABC的角平分線BO與∠ACB的角平分線CO的交點為O.
(1)若∠A=70°,求∠BOC的度數(shù);
(2)若∠A=α,求∠BOC的度數(shù);
(3)如圖2,若BO、CO分別是∠ABC、∠ACB的三等分線,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=α,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com