【題目】如圖,等邊三角形的邊長是2,是高所在直線上的一個(gè)動點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,則在點(diǎn)運(yùn)動過程中,線段長度的最小值是( )
A.B.1C.D.
【答案】B
【解析】
由旋轉(zhuǎn)的特性以及∠MBN=60°,可知△BMN是等邊三角形,從而得出MN=BN,再由點(diǎn)到直線的所有線段中,垂線段最短可得出結(jié)論.
解:由旋轉(zhuǎn)的特性可知,BM=BN,
又∵∠MBN=60°,
∴△BMN為等邊三角形.
∴MN=BM,
∵點(diǎn)M是高CH所在直線上的一個(gè)動點(diǎn),
∴當(dāng)BM⊥CH時(shí),MN最短(到直線的所有線段中,垂線段最短).
又∵△ABC為等邊三角形,且AB=BC=CA=2,
∴當(dāng)點(diǎn)M和點(diǎn)H重合時(shí),MN最短,且有MN=BM=BH=AB=1.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:y=x2+bx+c
(1)若拋物線過點(diǎn)(2,﹣3),(4,5),求b、c.
(2)若拋物線過(﹣1,m2﹣m),(2,m2+2m),且﹣5≤m≤﹣3,求在m的變化過程中,拋物線最低點(diǎn)的坐標(biāo).
(3)直線y=2x+n與拋物線y=x2+bx+c交于A(﹣5,yA),B(﹣3,yB),把y=x2+bx+c向右平移t個(gè)單位(t>0)后交直線y=2x+n于C、D兩點(diǎn),若CD=2AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】牧民巴特爾在生產(chǎn)和銷售某種奶食品時(shí),采取客戶先網(wǎng)上訂購,然后由巴特爾付費(fèi)選擇甲或乙快遞公司送貨上門的銷售方式,甲快遞公司運(yùn)送2千克,乙快遞公司運(yùn)送3千克共需運(yùn)費(fèi)42元:甲快遞公司運(yùn)送5千克,乙快遞公司運(yùn)送4千克共需運(yùn)費(fèi)70元.
(1)求甲、乙兩個(gè)快遞公司每千克的運(yùn)費(fèi)各是多少元?
(2)假設(shè)巴特爾生產(chǎn)的奶食品當(dāng)日可以全部出售,且選擇運(yùn)費(fèi)低的快遞公司運(yùn)送,若該產(chǎn)品每千克的生產(chǎn)成本y1元(不含快遞運(yùn)費(fèi)),銷售價(jià)y2元與生產(chǎn)量x千克之間的函數(shù)關(guān)系式為:y1=,y2=﹣6x+120(0<x<13),則巴特爾每天生產(chǎn)量為多少千克時(shí)獲得利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)行垃圾資源化利用,是社會文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設(shè)備可利用最新技術(shù)將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備,若干已知購買甲型智能設(shè)備花費(fèi)360萬元,購買乙型智能設(shè)備花費(fèi)480萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為140萬元.
(1)求甲乙兩種智能設(shè)備單價(jià);
(2)垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價(jià)為每噸200元,平均每天可售出350噸,而當(dāng)銷售價(jià)每降低1元,平均每天可多售出5噸,但售價(jià)在每噸200元基礎(chǔ)上降價(jià)幅度不超過7%,
①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達(dá)到36080元,求每噸燃料棒售價(jià)應(yīng)為多少元?
②每噸燃料棒售價(jià)應(yīng)為多少元時(shí),這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD,連接AF,CE、AF平分交BC于點(diǎn)F,CE平分交AD于點(diǎn)E.
(1)如圖1,求證:四邊形AFCE為平行四邊形;
(2)如圖2,連接BD,分別交AF、CE于G、H,若,在不添加其他輔助線的情況下,直接找出圖中面積為平行四邊形ABCD面積的的三角形或四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將直線y=﹣3x向上平移3個(gè)單位,與y軸、x軸分別交于點(diǎn)A、B,以線段AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC.若反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,求此反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識競賽,某班進(jìn)行了四次模擬訓(xùn)練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖:
(1)該班總?cè)藬?shù)是 ;
(2)根據(jù)計(jì)算,請你補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一塊含30°(即∠CAB=30°)角的三角板和一個(gè)量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN恰好重合,其量角器最外緣的讀數(shù)是從N點(diǎn)開始(即N點(diǎn)的讀數(shù)為0°),現(xiàn)有射線CP繞點(diǎn)C從CA的位置開始按順時(shí)針方向以每秒2度的速度旋轉(zhuǎn)到CB位置,在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E.
(1)當(dāng)旋轉(zhuǎn)7.5秒時(shí),連接BE,試說明:BE=CE;
(2)填空:①當(dāng)射線CP經(jīng)過△ABC的外心時(shí),點(diǎn)E處的讀數(shù)是 .
②當(dāng)射線CP經(jīng)過△ABC的內(nèi)心時(shí),點(diǎn)E處的讀數(shù)是 ;
③設(shè)旋轉(zhuǎn)x秒后,E點(diǎn)出的讀數(shù)為y度,則y與x的函數(shù)式是y= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BDE中,∠BDE=90°,BD=4,點(diǎn)D的坐標(biāo)是(6,0),∠BDO=15°,將△BDE旋轉(zhuǎn)到△ABC的位置,點(diǎn)C在BD上,則旋轉(zhuǎn)中心的坐標(biāo)為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com