【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),CD平分,CE平分,CD=CE.

(1)求證:

(2)若,求的度數(shù).

【答案】(1)見(jiàn)解析;(2)67°

【解析】

(1)根據(jù)角平分線的定義得到∠ACD=BCE,由C是線段AB的中點(diǎn),得到AC=BC.根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)平角的定義得到∠ACD=DCE=BCE=60°,根據(jù)全等三角形的性質(zhì)得到∠E=D=53°,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.

(1)證明:CD平分∠ACE,

ACD=DCE,

CE平分∠BCD,

DCE=BCE,

ACD=BCE,

C是線段AB的中點(diǎn),

AC=BC.

ACDBCE中,

ACDBCE;


(2) ACD=DCE=BCE=×180°=60°,

ACDBCE,

E=D=53°,

B=180°60°53°=67°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D,E,F(xiàn),G,已知∠CGD=42°
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示,點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展校園“美德少年”評(píng)選活動(dòng),共有“助人為樂(lè)”,“自強(qiáng)自立”、“孝老愛(ài)親”,“誠(chéng)實(shí)守信”四種類(lèi)別,每位同學(xué)只能參評(píng)其中一類(lèi),評(píng)選后,把最終入選的20位校園“美德少年”分類(lèi)統(tǒng)計(jì),制作了如下統(tǒng)計(jì)表,后來(lái)發(fā)現(xiàn),統(tǒng)計(jì)表中前兩行的數(shù)據(jù)都是正確的,后兩行的數(shù)據(jù)中有一個(gè)是錯(cuò)誤的.

類(lèi)別

頻數(shù)

頻率

助人為樂(lè)美德少年

a

0.20

自強(qiáng)自立美德少年

3

b

孝老愛(ài)親美德少年

7

0.35

誠(chéng)實(shí)守信美德少年

6

0.32

根據(jù)以上信息,解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中的a= ,b ;
(2)統(tǒng)計(jì)表后兩行錯(cuò)誤的數(shù)據(jù)是 ,該數(shù)據(jù)的正確值是 ;
(3)校園小記者決定從A,B,C三位“自強(qiáng)自立美德少年”中隨機(jī)采訪兩位,用畫(huà)樹(shù)狀圖或列表的方法,求A,B都被采訪到的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB=18米,于點(diǎn)A,MA=6米,射線于點(diǎn)B,P點(diǎn)從B點(diǎn)出發(fā)向A運(yùn)動(dòng),每秒走1米,Q點(diǎn)從B點(diǎn)向D點(diǎn)運(yùn)動(dòng),每秒走2米,P,Q同時(shí)從B出發(fā),則出發(fā)x秒后,在線段MA上有一點(diǎn)C,使CAPPBQ全等,則x的值為(

A. 4 B. 6 C. 49 D. 69

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,于點(diǎn)E,與CD相交于點(diǎn)F,于點(diǎn)H,交BE于點(diǎn)G.下列結(jié)論:①BD=CD;AD+CF=BD;AE=CF.其中正確的是____________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)了三角形全等的判定方法和直角三角形全等的判定方法后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情況進(jìn)行研究.

初步思考我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在ABCDEF中,AC=DF,BC=EF,,然后,對(duì)進(jìn)行分類(lèi),可分為是直角,鈍角,銳角三種情況進(jìn)行探索.

深入探究)(1)當(dāng)是直角時(shí),如圖①,在ABCDEF中,AC=DF,BC=EF,,根據(jù) 可以知道.

(2)當(dāng)是鈍角時(shí),如圖②,在ABCDEF中,AC=DF,BC=EF,,且都是鈍角,求證:.

(3)當(dāng)是銳角時(shí),在ABCDEF中,AC=DF,BC=EF,,且都是銳角,請(qǐng)你用尺規(guī)在圖③中作出DEF,使DEFABC不全等(不寫(xiě)做法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某油箱容量為60 L的汽車(chē),加滿汽油后行駛了100 Km時(shí),油箱中的汽油大約消耗了,如果加滿汽油后汽車(chē)行駛的路程為x Km,郵箱中剩油量為y L,則yx之間的函數(shù)解析式和自變量取值范圍分別是( )

A. y=0.12x,x0 B. y=60﹣0.12xx0 C. y=0.12x,0≤x≤500 D. y=60﹣0.12x0≤x≤500

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三角形ABC的邊AB是⊙0的切線,切點(diǎn)為B.AC經(jīng)過(guò)圓心0并與圓相交于點(diǎn)D、C,過(guò)C作直線CE丄AB,交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸、y軸分別交于A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).

(1)試求拋物線的解析式;
(2)P是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)P的橫坐標(biāo)為t,P到BC的距離為h,求h與t的函數(shù)關(guān)系式,并求出h的最大值.
(3)設(shè)點(diǎn)M是x軸上的動(dòng)點(diǎn),在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形是菱形?若存在,求出所有符合條件的點(diǎn)N坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案