如圖,點M(4,0),以點M為圓心、2為半徑的圓與x軸交于點A、B.已知拋物線y=
1
6
x2+bx+c過點A和B,與y軸交于點C.
(1)求點C的坐標,并畫出拋物線的大致圖象;
(2)點Q(8,m)在拋物線y=
1
6
x2+bx+c上,點P為此拋物線對稱軸上一個動點,求PQ+PB的最小值;
(3)CE是過點C的⊙M的切線,點E是切點,求OE所在直線的解析式.
(1)由已知,得A(2,0),B(6,0),
∵拋物線y=
1
6
x2+bx+c過點A和B,
1
6
×22+2b+c=0
1
6
×62+6b+c=0

解得
b=-
4
3
c=2

則拋物線的解析式為
y=
1
6
x2-
4
3
x+2.
故C(0,2).(2分)
(說明:拋物線的大致圖象要過點A、B、C,其開口方向、頂點和對稱軸相對準確)(3分)

(2)如圖①,拋物線對稱軸l是x=4.
∵Q(8,m)在拋物線上,
∴m=2.過點Q作QK⊥x軸于點K,則K(8,0),QK=2,AK=6,
∴AQ=
AK2+QK2
=2
10
.(5分)
又∵B(6,0)與A(2,0)關于對稱軸l對稱,
∴PQ+PB的最小值=AQ=2
10


(3)如圖②,連接EM和CM.
由已知,得EM=OC=2.
∵CE是⊙M的切線,
∴∠DEM=90°,
則∠DEM=∠DOC.
又∵∠ODC=∠EDM.
故△DEM≌△DOC.
∴OD=DE,CD=MD.
又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC.
則OECM.(7分)
設CM所在直線的解析式為y=kx+b,CM過點C(0,2),M(4,0),
4k+b=0
b=2

解得
k=-
1
2
b=2

直線CM的解析式為y=-
1
2
x+2

又∵直線OE過原點O,且OECM,
∴OE的解析式為y=-
1
2
x.(8分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1、2,已知拋物線y=ax2+bx+3經(jīng)過點B(-1,0)、C(3,0),交y軸于點A.
(1)求此拋物線的解析式;
(2)如圖1,若M(0,1),過點A的直線與x軸交于點D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EFHG,EF=EH=1.直角梯形EFGH從點D開始,沿射線DA方向勻速運動,運動的速度為1個長度單位/秒,在運動過程中腰FG與直線AD始終重合,設運動時間為t秒.當t為何值時,以M、O、H、E為頂點的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線頂點為K,KI⊥x軸于I點,一塊三角板直角頂點P在線段KI上滑動,且一直角邊過A點,另一直角邊與x軸交于Q(m,0),請求出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+2交x軸于A(-1,0),B(4,0)兩點,交y軸于點C,與過點C且平行于x軸的直線交于另一點D,點P是拋物線上一動點.

(1)求拋物線解析式及點D坐標;
(2)點E在x軸上,若以A,E,D,P為頂點的四邊形是平行四邊形,求此時點P的坐標;
(3)過點P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點Q的對應點為Q′.是否存在點P,使Q′恰好落在x軸上?若存在,求出此時點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖冢蟪鯭點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A為y軸正半軸上一點,A,B兩點關于x軸對稱,過點A任作直線交拋物線y=
2
3
x2
于P,Q兩點.
(1)求證:∠ABP=∠ABQ;
(2)若點A的坐標為(0,1),且∠PBQ=60°,試求所有滿足條件的直線PQ的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

當路況良好時,在干燥的路面上,汽車的剎車距離s與車速v之間的關系如下表所示:
v/(km/h)406080100120
s/m24.27.21115.6
(1)在平面直角坐標系中描出每對(v,s)所對應的點,并用光滑的曲線順次連接各點;
(2)利用圖象驗證剎車距離s(m)與車速v(km/h)是否有如下關系:s=
1
1000
v2+
1
100
v0
;
(3)求當s=9m時的車速v.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點C、B分別為拋物線C1:y1=x2+1,拋物線C2:y2=a2x2+b2x+c2的頂點.分別過點B、C作x軸的平行線,交拋物線C1、C2于點A、D,且AB=BD.
(1)求點A的坐標:
(2)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=2x2+b1x+c1”.其他條件不變,求CD的長和a2的值;
(3)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=4x2+b1x+c1”,其他條件不變,求b1+b2的值______(直接寫結果).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

市“健益”超市購進一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗知,每天銷售量y(千克)與銷售單價x(元)(x≥30)存在如下圖所示的一次函數(shù)關系.
(1)試求出y與x的函數(shù)關系式;
(2)設“健益”超市銷售該綠色食品每天獲得利潤為P元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
(3)根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).

查看答案和解析>>

同步練習冊答案