如圖,BD為⊙O的直徑,∠A=30°,則∠CBD的度數(shù)為( )

A.30°
B.45°
C.60°
D.80°
【答案】分析:由BD為⊙O的直徑,可證∠BCD=90°,又由圓周角定理知,∠D=∠A=30°,即可求∠CBD.
解答:解:∵BD為⊙O的直徑,
∴∠BCD=90°,
∴∠D=∠A=30°,
∴∠CBD=90°-∠D=60°.
故選C.
點評:本題利用了直徑所對的圓周角是直角和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、如圖,一電線桿AB的影子分別落在了地上和墻上,某一時刻,小明豎起1米高的直桿,量得其影長為0.5米,此時,他又量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.小明用這些數(shù)據(jù)很快算出了電線桿AB的高.請你計算,電線桿AB的高為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海陵區(qū)模擬)如圖是泰州鳳城河邊的“望海樓”,小明學習測量物體高度后,利用星期天測量了望海樓AB的高度,小明首先在一空地上用高度為1.5米的測角儀CD豎直放置地面,測得點A的仰角為30°,沿著DB方向前進DE=24米,然后登上EF=2米高的平臺,又前進FG=2米到點G,再用1.5米高的測角儀測得點A的仰角為45°,圖中所有點均在同一平面,F(xiàn)G∥DB,CD∥FE∥AB∥GH.
(1)求點H到地面BD的距離;
(2)試求望海樓AB的高度約為多少米?(
3
≈1.73
,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆江蘇省九年級下冊《投影與視圖》單元測試數(shù)學卷 題型:選擇題

如圖,一電線桿AB的影子分別落在地上和墻上,某一時刻,小明豎起1m高的直桿,量

得其影長為0.5m,此時,他又量得電線桿AB落在地上的影子BD長3m,落在墻上的影子

CD的高為2m,小明用這些數(shù)據(jù)很快算出了電線桿AB的高,請你計算,電線桿AB的高為

( 。

A.5m      B.6m      C.7m        D.8m

 

查看答案和解析>>

同步練習冊答案