【題目】如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)E是線段AC上的一個(gè)動(dòng)點(diǎn)且=k(0<k<1),點(diǎn)F在線段BC上,且DEFH為矩形;過點(diǎn)E作MN⊥BC,分別交AD,BC于點(diǎn)M,N.
(1)求證:△MED∽△NFE;
(2)當(dāng)EF=FC時(shí),求k的值.
(3)當(dāng)矩形EFHD的面積最小時(shí),求k的值,并求出矩形EFHD面積的最小值.
【答案】(1)見解析;(2);(3)矩形EFHD的面積最小值為,k=.
【解析】
(1)由矩形的性質(zhì)得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,證出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;
(2)設(shè)AM=x,則MD=NC=4﹣x,由三角函數(shù)得出ME=x,得出NE=3﹣x,由相似三角形的性質(zhì)得出=,求出NF=x,得出FC=4﹣x﹣x=4﹣x,由勾股定理得出EF==,當(dāng)EF=FC時(shí),得出方程4﹣x=,解得x=4(舍去),或x=,進(jìn)而得出答案;
(3)由相似三角形的性質(zhì)得出==,得出DE=EF,求出矩形EFHD的面積=DE×EF=EF2==,由二次函數(shù)的性質(zhì)進(jìn)而得出答案.
(1)證明:∵四邊形ABCD是矩形,
∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,
∵MN⊥BC,
∴MN⊥AD,
∴∠EMD=∠FNE=90°,
∵四邊形DEFH是矩形,
∴∠MED+∠NEF=90°,
∴∠NEF=∠MDE,
∴△MED∽△NFE;
(2)解:設(shè)AM=x,則MD=NC=4﹣x,
∵tan∠DAC=tan∠MAE===,
∴ME=x,
∴NE=3﹣x,
∵△MED∽△NFE,
∴=,即=,
解得:NF=x,
∴FC=4﹣x﹣x=4﹣x,EF==,
當(dāng)EF=FC時(shí),4﹣x=,
解得:x=4或x=,
由題意可知x=4不合題意,
當(dāng)x=時(shí),AE=,
∵AC===5,
∴k==;
(3)解:由(1)可知:△MED∽△NFE,
∴,
∴DE=EF,
∴矩形EFHD的面積=DE×EF=EF2==
∴當(dāng)x﹣=0時(shí),即x=時(shí),矩形EFHD的面積最小,最小值為:,
∵cos∠MAE===,
∴AE=AM=×=,
此時(shí)k==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為個(gè)單位長度的小正方形組成的網(wǎng)格中,已知點(diǎn),,,均為網(wǎng)格線的交點(diǎn).
(1)在網(wǎng)格中將繞點(diǎn)順時(shí)針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖形;
(2)在網(wǎng)格中將放大倍得到,使與為對(duì)應(yīng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,等腰直角三角形中,,點(diǎn)、點(diǎn)分別在邊上,且,顯然.
變式:若將圖1中的繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使得點(diǎn)在的內(nèi)部,其它條件不變(如圖2),請(qǐng)你猜想線段與線段的關(guān)系,并加以證明.
拓展:若圖2中的、都為等邊三角形,其它條件不變(如圖3),則__________,直線與相交所夾的銳角為__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線 與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
如圖1,在中,是的完美分割線,且, 則的度數(shù)是
如圖2,在中,為角平分線,,求證: 為的完美分割線.
如圖2,中,是的完美分割線,且是以為底邊的等腰三角形,求完美分割線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】只有1和它本身兩個(gè)因數(shù)且大于1的正整數(shù)叫做素?cái)?shù).我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,如16=3+ 13.
(1)若從7, 11, 19, 23中隨機(jī)抽取1個(gè)素?cái)?shù),則抽到的素?cái)?shù)是7的概率是_______;
(2)若從7, 11, 19, 23中隨機(jī)抽取1個(gè)素?cái)?shù),再從余下的3個(gè)數(shù)字中隨機(jī)抽取1個(gè)素?cái)?shù),用面樹狀圖或列表的方法求抽到的兩個(gè)素?cái)?shù)之和大于等于30的概率,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最。咳绻嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD(AD>DC)的一角沿著過點(diǎn)D的直線折疊,使點(diǎn)A與BC邊上的點(diǎn)E重合,折痕交AB于點(diǎn)F.若BE:EC=m:n,則AF:FB=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0),C(0,3),點(diǎn)M是拋物線的頂點(diǎn).
(1)求二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D.若OD=m,△PCD的面積為S,
①求S與m的函數(shù)關(guān)系式,寫出自變量m的取值范圍.
②當(dāng)S取得最值時(shí),求點(diǎn)P的坐標(biāo);
(3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com