【題目】甲、乙兩人玩“錘子、石頭、剪子、布”游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有“錘子”、“石頭”、“剪子”、“布”的卡片張數(shù)分別為2,3,4,6.兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“錘子”勝“石頭”和“剪子”,“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“錘子”和“石頭”,同種卡片不分勝負.
(1)若甲先摸,則他摸出“石頭”的概率是多少?
(2)若甲先摸出了“石頭”,則乙獲勝的概率是多少?
(3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?
【答案】(1).
(2).
(3)甲先摸出“錘子”獲勝的可能性最大.
【解析】
(1)當(dāng)問題情境是從若干個元素中抽取一個元素(即一次性操作問題)時,可以直接應(yīng)用公式(m表示事件A發(fā)生可能出現(xiàn)的結(jié)果數(shù),n表示一次實驗中所有等可能出現(xiàn)的結(jié)果數(shù));(2)因為甲先摸出了“石頭”后無放回,所以袋子中還有14張卡片;(3)甲先摸,摸到“錘子”、“石頭”、“剪子”、“布”的可能性都有,所以要分類討論.
(1)若甲先摸,共有15張卡片可供選擇,其中寫有“石頭”的卡片共3張,
故甲摸出“石頭”的概率為.
(2)若甲先摸且摸出“石頭”,則可供乙選擇的卡片還有14張,其中乙只有摸出卡片“錘子”或“布”才能獲勝,這樣的卡片共有8張,故乙獲勝的概率為.
(3)若甲先摸,則“錘子”、“石頭”、“剪子”、“布”四種卡片都有可能被摸出.
若甲先摸出“錘子”,則甲獲勝(即乙摸出“石頭”或“剪子”)的概率為;
若甲先摸出“石頭”,則甲獲勝(即乙摸出“剪子”)的概率為;
若甲先摸出“剪子”,則甲獲勝(即乙摸出“布”)的概率為;
若甲先摸出“布”,則甲獲勝(即乙摸出“錘子”或“石頭”)的概率為.
故甲先摸出“錘子”獲勝的可能性最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點的水平距離為6m時,達到最高2.6m,球網(wǎng)與O點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )
A. 球不會過網(wǎng) B. 球會過球網(wǎng)但不會出界
C. 球會過球網(wǎng)并會出界 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6相交于A(, )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸,交拋物線于點C.
(1)求拋物線的表達式;
(2)是否存在這樣的點P,使線段PC的長有最大值?若存在,求出這個最大值,若不存在,請說明理由;
(3)當(dāng)△PAC為直角三角形時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,E為對角線BD上一個動點,以E為直角頂點,AE為直角邊作等腰Rt△AEF,A、E、F按逆時針排列.當(dāng)點E從點B運動到點D時,點F的運動路徑長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上, 直線MN: y=x-8沿x軸的負方向以每秒2個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t, m與t的函數(shù)圖象如圖2所示.
(1)若AB=6
①點A的坐標為_____________,矩形ABCD的面積為____________.
②求a, b的值;
(2)若AB=4,在平移過程中,求直線MN掃過矩形ABCD的面積 S與 t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)以下四邊形中,是勾股四邊形的為 .(填寫序號即可)
①矩形;②有一個角為直角的任意凸四邊形;③有一個角為60°的菱形.
(2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到△DBE,∠DCB=30°,連接AD,DC,CE.
①求證:△BCE是等邊三角形;
②求證:四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+2與x軸、y軸分別相交于點A、點B,∠BAO=30°,若將△AOB沿直錢CD折疊,使點A與點B重合,折痕CD與x軸交于點C,與AB交于點D.
(1)求k的值;
(2)求點C的坐標;
(3)求直線CD的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,如圖所示.
(1)∵ (已知),∴__________________ (______).
(2)∵ (已知),∴__________________(______).
(3)∵_________(已知),∴(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體.一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com