精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為
AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長(zhǎng);
(Ⅱ)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(Ⅲ)以點(diǎn)E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍.
分析:(I)根據(jù)題意可求出點(diǎn)B的坐標(biāo),從而得出BC的長(zhǎng),再證明Rt△BP1A∽R(shí)t△CAB.即可求出AP1的長(zhǎng);
(II)過(guò)P作BC的垂線,則可證明四邊形P1PEB為平行四邊形,∴Rt△BAP1≌Rt△PGE,則s=-2m+9.1≤m<4.
(III)由△EFC∽△ABC,則EC,PE,PF,再由△EFC∽△PFA,得出AP,再根據(jù)當(dāng)AP=5-
5
時(shí),外切;當(dāng)AP>5-
5
時(shí),相交;當(dāng)AP<5-
5
時(shí),外離三種情況得出答案.
解答:解:(Ⅰ)∵點(diǎn)在直線y=2x+1上,
∴B(0,1).
又∵A(0,3),
∴AB=2,BC=2AB=4.
∵P1為圓心,F(xiàn)1為P1與直線AC的切點(diǎn),
∴P1F1⊥AC,∠BAF1+∠ABF1=90°.
又∵∠AP1F1+∠ABF1=90°,
∴∠AP1F1=∠BAF1
在Rt△ABC和Rt△P1AB中,
∵∠BP1A=∠CAB,
∴Rt△BP1A∽R(shí)t△CAB.
AB
BC
=
AP1
AB
,AP1=
AB2
BC
=
22
4
=1
;

(Ⅱ)PD=4-m,過(guò)P作BC的垂線,垂足為G,
∵PF∥P1F1,P1P∥BE,
∴四邊形P1PEB為平行四邊形,
∴P1B=PE.
又PG=AB,
∴Rt△BAP1≌Rt△PGE,AP1=GE=1.
∴EC=CG+GE=PD+GE=5-m,
∴s=-2m+9.(6分)
1≤m<4;

(Ⅲ)當(dāng)EF=1時(shí),
∵△EFC∽△ABC,
EF
EC
=
AB
AC
=
5
5
,EC=
5

PE=BP1=
AB2+AP12
=
5
,
PF=PE-EF=
5
-1

又△EFC∽△PFA,
EC
EF
=
AP
PF
,AP=
EC×PF
EF
=5-
5
,
當(dāng)AP=5-
5
時(shí),外切;
當(dāng)AP>5-
5
時(shí),相交;
當(dāng)AP<5-
5
時(shí),外離.
點(diǎn)評(píng):本題是一個(gè)綜合性的題目,考查的知識(shí)點(diǎn)有:相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì),直線和圓的位置關(guān)系,圓和圓的位置關(guān)系以及一次函數(shù)問(wèn)題,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長(zhǎng)為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過(guò)程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過(guò)程中,△BMN的周長(zhǎng)是否發(fā)生變化?若沒(méi)有變化,請(qǐng)求出其周長(zhǎng);若發(fā)生變化,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省荊州市江陵縣五三中學(xué)九年級(jí)(上)期末數(shù)學(xué)模擬試卷5(解析版) 題型:解答題

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長(zhǎng)為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過(guò)程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過(guò)程中,△BMN的周長(zhǎng)是否發(fā)生變化?若沒(méi)有變化,請(qǐng)求出其周長(zhǎng);若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年重慶市涪陵二中中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長(zhǎng)為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過(guò)程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過(guò)程中,△BMN的周長(zhǎng)是否發(fā)生變化?若沒(méi)有變化,請(qǐng)求出其周長(zhǎng);若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年5月中考數(shù)學(xué)模擬試卷(48)(解析版) 題型:解答題

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長(zhǎng)為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過(guò)程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過(guò)程中,△BMN的周長(zhǎng)是否發(fā)生變化?若沒(méi)有變化,請(qǐng)求出其周長(zhǎng);若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

(2010•重慶)已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長(zhǎng)為2的等邊△OAB的頂點(diǎn)B在第一象限,頂點(diǎn)A在x軸的正半軸上.另一等腰△OCA的頂點(diǎn)C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
(1)求在運(yùn)動(dòng)過(guò)程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點(diǎn)A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過(guò)程中,△BMN的周長(zhǎng)是否發(fā)生變化?若沒(méi)有變化,請(qǐng)求出其周長(zhǎng);若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案