【題目】如圖,矩形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)0,過(guò)點(diǎn)O作OE⊥AC交AB于E,若BC=4,△AOE的面積為6,則cos∠BOE= .
【答案】
【解析】解:如圖作OM∥BC交AB于M,連接EC.
∵四邊形ABCD是矩形,
∴∠ABC=90°,AO=OC,
∵EO⊥AC,
∴EA=EC,
∵∠EBC+∠EOC=180°,
∴E、B、C、O四點(diǎn)共圓,
∴∠BOE=∠ECB,
∵OM∥BC,AO=OC,
∴AM=BM.OM= BC=2,∠AMO=∠ABC=90°,
∵S△AOE=6,
∴ AEOM=6,
∴AE=EC=6,
∴cos∠BOE=cos∠ECB= = = .
所以答案是 .
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+c的圖象向左平移5個(gè)單位或向右平移1個(gè)單位后都會(huì)經(jīng)過(guò)原點(diǎn),則此拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)的橫坐標(biāo)是( )
A.2
B.﹣2
C.3
D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線(xiàn)y=ax2﹣10ax+16a(a≠0)交x軸于A(yíng)、B兩點(diǎn),拋物線(xiàn)的頂點(diǎn)為D,對(duì)稱(chēng)軸與x軸交于點(diǎn)H,且AB=2DH.
(1)求a的值;
(2)點(diǎn)P是對(duì)稱(chēng)軸右側(cè)拋物線(xiàn)上的點(diǎn),連接PD,PQ⊥x軸于點(diǎn)Q,點(diǎn)N是線(xiàn)段PQ上的點(diǎn),過(guò)點(diǎn)N作NF⊥DH于點(diǎn)F,NE⊥PD交直線(xiàn)DH于點(diǎn)E,求線(xiàn)段EF的長(zhǎng);
(3)在(2)的條件下,連接DN、DQ、PB,當(dāng)DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°時(shí),作NC⊥PB交對(duì)稱(chēng)軸左側(cè)的拋物線(xiàn)于點(diǎn)C,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+ 與直線(xiàn)AB交于點(diǎn)A(﹣1,0),B(4, ),點(diǎn)D是拋物線(xiàn)A、B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),直線(xiàn)CD與y軸平行,交直線(xiàn)AB于點(diǎn)C,連接AD,BD.
(1)求拋物線(xiàn)的表達(dá)式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】模型介紹:古希臘有一個(gè)著名的“將軍飲馬問(wèn)題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸側(cè)的兩個(gè)軍營(yíng)A、B,他總是先去A營(yíng),再到河邊飲馬,之后再去B營(yíng),如圖 ①,他時(shí)常想,怎么走才能使每天的路程之和最短呢?
大數(shù)學(xué)家海倫曾用軸對(duì)稱(chēng)的方法巧妙的解決了這問(wèn)題
如圖②,作B關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)B′,連接AB′與直線(xiàn)l交于點(diǎn)C,點(diǎn)C就是所求的位置.
請(qǐng)你在下列的閱讀、應(yīng)用的過(guò)程中,完成解答.
(1)理由:如圖③,在直線(xiàn)L上另取任一點(diǎn)C′,連接AC′,BC′,B′C′,
∵直線(xiàn)l是點(diǎn)B,B′的對(duì)稱(chēng)軸,點(diǎn)C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′= .
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
歸納小結(jié):
本問(wèn)題實(shí)際是利用軸對(duì)稱(chēng)變換的思想,把A、B在直線(xiàn)的同側(cè)問(wèn)題轉(zhuǎn)化為在直線(xiàn)的兩側(cè),從而可利用“兩點(diǎn)之間線(xiàn)段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問(wèn)題加以解決(其中C為AB′與l的交點(diǎn),即A、C、B′三點(diǎn)共線(xiàn)).
本問(wèn)題可拓展為“求定直線(xiàn)上一動(dòng)點(diǎn)與直線(xiàn)外兩定點(diǎn)的距離和的最小值”問(wèn)題的數(shù)學(xué)模型.
(2)模型應(yīng)用
如圖 ④,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),F(xiàn)是AC上一動(dòng)點(diǎn).
求EF+FB的最小值
分析:解決這個(gè)問(wèn)題,可以借助上面的模型,由正方形的對(duì)稱(chēng)性可知,B與D關(guān)于直線(xiàn)AC對(duì)稱(chēng),連結(jié)ED交AC于F,則EF+FB的最小值就是線(xiàn)段的長(zhǎng)度,EF+FB的最小值是 .
如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是 的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,則BP+AP的最小值是;
如圖⑥,一次函數(shù)y=﹣2x+4的圖象與x,y軸分別交于A(yíng),B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C與點(diǎn)D分別為線(xiàn)段OA,AB的中點(diǎn),點(diǎn)P為OB上一動(dòng)點(diǎn),求:PC+PD的最小值,并寫(xiě)出取得最小值時(shí)P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE=1: :3,求∠AED的度數(shù);
(3)若BC=4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(shí)(如圖2),若OF= ,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校積極開(kāi)展“陽(yáng)光體育”活動(dòng),共開(kāi)設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛(ài)哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校最喜愛(ài)籃球的人數(shù)比最喜愛(ài)足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線(xiàn)上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA勻速移動(dòng),當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng),DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線(xiàn)段PQ的垂直平分線(xiàn)上?
(2)連接PE,
設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由;
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線(xiàn)上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),請(qǐng)用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A(yíng)、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣1,0),AB=4,請(qǐng)求出該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com