【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以點O為圓心,OB為半徑作圓,過點C作CD∥AB交⊙O于點D,連接BD.
(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;
(2)試判斷四邊形BOCD的形狀,并證明你的判斷;
(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.
【答案】(1)猜想:AC與⊙O相切(2)四邊形BOCD為菱形(3)
【解析】試題分析:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的判定方法和圓錐的計算.(1)根據(jù)等腰三角形的性質(zhì)得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根據(jù)切線的判定定理即可得到,AC是⊙O的切線;
(2)連結(jié)OD,由CD∥AB得到∠AOC=∠OCD,根據(jù)三角形外角性質(zhì)得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判斷△OCD為等邊三角形,則CD=OB=OC,先可判斷四邊形OBDC為平行四邊形,加上OB=OC,于是可判斷四邊形BOCD為菱形;(3)在Rt△AOC中,根據(jù)含30度的直角三角形三邊的關(guān)系得到
OC=∴弧BC的弧長=然后根據(jù)圓錐的計算求圓錐的底面圓半徑.
試題解析(1)AC與⊙O相切
,∠ACB=120°,∴∠ABC=∠A=30°。
,∠CBO=∠BCO=30°,
∴∠OCA=120°-30°=90°,∴AC⊥OC,
又∵OC是⊙O的半徑,
∴AC與⊙O相切。
(2)四邊形BOCD是菱形
連接OD。
∵CD∥AB,
∴∠OCD=∠AOC=2×30°=60°
,
∴△COD是等邊三角形,
,
∴四邊形BOCD是平行四邊形,
∴四邊形BOCD是菱形。
(3)在Rt△AOC中,∠A=30°,AC=6,
ACtan∠A=6tan30°=,
∴弧BC的弧長
∴底面圓半徑
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連結(jié)EC.
(1)求證:AD=EC;
(2)求證:四邊形ADCE是菱形;
(3)若AB=AO,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點E、F分別是四邊形ABCD邊AB、AD上的點,且DE與CF相交于點G.
(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:
(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DECD=CFDA:
(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當∠BAD=90°時,試判斷是否為定值,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以矩形ABCD兩對角線的交點O為原點建立平面直角坐標系,且x軸過BC中點,y軸過CD中點,y=x﹣2與邊AB、BC分別交于點E、F.若AB=10,BC=3,則△EBF的面積是( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(2,4),B(1,1),C(4,3).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標;
(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90后的△A2BC2;
(3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和π).
(4)在x軸上有一點P,PA+PB的值最小,請直接寫出點P的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開展了“學生使用手機調(diào)研”活動,隨機抽取部分學生進行“使用手機的目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,圖②的統(tǒng)計圖.已知“查資料”的人數(shù)是40人.
(1)在這次調(diào)查中,一共抽取了 名學生;
(2)在扇形統(tǒng)計圖中,“玩游戲”對應的圓心角的度數(shù)是 度;
(3)補全條形統(tǒng)計圖;(注:0-1小時有16人)
(4)該校共有學生2660人,請估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=6,CD=3,∠ADC=α.
(1)試寫出α的正弦、余弦、正切這三個函數(shù)值;
(2)若∠B與∠ADC互余,求BD及AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC和△DEF的頂點分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求畫圖:以點O為位似中心,將△ABC向y軸左側(cè)按比例尺2:1放大得△ABC的位似圖形△A1B1C1,并解決下列問題:
(1)頂點A1的坐標為 ,B1的坐標為 ,C1的坐標為 ;
(2)請你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2,且△A2B2C2恰與△DEF拼接成一個平行四邊形(非正方形),寫出符合要求的變換過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,德強學校初中部中考屢創(chuàng)佳績,捷報頻傳.為了吸納更多的優(yōu)質(zhì)生源,學校決定要新建一棟層的教學大樓,每層樓有間教室,進出這棟大樓共有道門,其中兩道正門大小相同,兩道側(cè)門大小相同,進樓前為了保證學生安全,對道門進行了測試:正常情況下,當同時開啟一道正門和兩道側(cè)門時,分鐘可以通過名學生;當同時開啟一道正門和一道側(cè)門時分鐘可以通過名學生.
(1)正常情況下,平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低,安全檢查規(guī)定,在緊急情況下全大樓的學生應在分鐘內(nèi)通過這道門安全撤離.如果這棟教學樓每班預計招收45名學生,那么建造的這道門是否符合安全規(guī)定?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com