【題目】如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2,AB=DP=2 ,E為CD的中點,點F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)當三棱錐B﹣EFC的體積等于四棱錐P﹣ABCD體積的 時,求 的值.
【答案】(I)證明:連接AC,∵BC=AD=2,AB=2 ,∠ABC=45°, ∴AC= =2,
∴AC2+BC2=AB2 , ∴AC⊥BC,
又AD∥BC,∴AD⊥AC,
∵AD=AP=2,DP=2 ,∴AD⊥AP,
又AP平面APC,AC平面APC,AP∩AC=A,
∴AD⊥平面PAC,又PC平面APC,
∴AD⊥PC.
(II)解:∵側面PAD⊥底面ABCD,
側面PAD∩底面ABCD=AD,AD⊥PA,PA平面PAD,
∴PA⊥平面ABCD,
∴VP﹣ABCD= ,
設F到平面ABCD的距離為h,則
VB﹣CEF=VF﹣BCE= = ,
∴ = VP﹣ABCD= ,
∴h= ,
∴ = = ,
∴ = .
【解析】(I)利用勾股定理的逆定理證明AD⊥AP,AC⊥BC,從而AD⊥平面PAC,于是AD⊥PC;(II)利用面面垂直的性質(zhì)證明PA⊥平面ABCD,根據(jù)棱錐的體積關系得出F到平面ABCD的距離,從而得出 的值.
【考點精析】本題主要考查了直線與平面垂直的性質(zhì)的相關知識點,需要掌握垂直于同一個平面的兩條直線平行才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某校以“我最喜愛的體育運動”為主題對全校學生進行隨機抽樣調(diào)查,調(diào)查的運動項目有:籃球、羽毛球、乒乓球、跳繩及其它項目(每位同學僅選一項).根據(jù)調(diào)查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
運動項目 | 頻數(shù)(人數(shù)) | 頻率 |
籃球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳繩 | 18 | 0.15 |
其它 | 12 | 0.10 |
請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的m= , n=;
(2)在扇形統(tǒng)計圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為 °;
(3)從選擇“籃球”選項的30名學生中,隨機抽取3名學生作為代表進行投籃測試,則其中某位學生被選中的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于 ;
(2)在網(wǎng)格中畫出△A1B1C1關于y軸的軸對稱圖形△A2B2C2;
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+x+c的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,請直接寫出此時點N的坐標;
(4)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如圖1,當DE=DF時,圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;
(2)如圖2,當DE=kDF(其中0<k<1)時,若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】過雙曲線x2﹣ =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放. 某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若 ,求2個A級水樣本混合化驗結果不達標的概率;
(Ⅱ) 若 ,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的方程為 .以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ2﹣8ρsinθ+15=0. (Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標方程;
(Ⅱ)設點P在C1上,點Q在C2上,求|PQ|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點,聯(lián)結DE交邊AB于點F,聯(lián)結AC交DE于點G,且 = .
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: = .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com