【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以/分的速度到達圖書館.小軍始終以同一速度騎行,兩人騎行的路程為(米)與時間(分鐘)的關(guān)系如圖.請結(jié)合圖象,解答下列問題:

1)填空:______;______;______

2)求線段所在直線的解析式.

3)若小軍的速度是120/分,求小軍第二次與爸爸相遇時距圖書館的距離.

【答案】110,15,200;(2;(3) 距圖書館的距離為

【解析】

1)根據(jù)爸爸的速度和行駛的路程可求出a的值,然后用a+5即可得到b的值,利用路程除以時間即可得出m的值;

2)用待定系數(shù)法即可求線段所在直線的解析式;

3)由題意得出直線OD的解析式,與直線BC的解析式聯(lián)立求出交點坐標(biāo),再用總路程減去交點縱坐標(biāo)即可得出答案.

1 (分鐘)

(分鐘)

/

故答案為:10,15,200;

2)設(shè)線段所在直線的解析式為

因為點 在直線BC上,代入得

解 得

線段所在直線的解析式為

3)因為小軍的速度是120/分,所以直線OD的解析式為

,解得

所以距圖書館的距離為 (米)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC2,以AB為直徑的⊙O分別交BCAC于點D、E,且點DBC的中點.

1)求證:ABC為等邊三角形;

2)求DE的長;

3)在線段AB的延長線上是否存在一點P,使PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:等腰△ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交ACAB邊于E,F點.若點DBC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( 。

A. 6 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.

(1)求拋物線C1的表達式;

(2)直接用含t的代數(shù)式表示線段MN的長;

(3)當(dāng)AMN是以MN為直角邊的等腰直角三角形時,求t的值;

(4)在(3)的條件下,設(shè)拋物線C1y軸交于點P,點My軸右側(cè)的拋物線C2上,連接AMy軸于點k,連接KN,在平面內(nèi)有一點Q,連接KQQN,當(dāng)KQ=1且∠KNQ=BNP時,請直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8x軸,y軸分別交于點A,點B,點Dy軸的負半軸上,若將DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.

(1)AB的長和點C的坐標(biāo);

(2)求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,對于任意兩點,,若點滿足,那么稱點是點的融合點,例如:,當(dāng)點滿足,時,則點是點的融合點.

1)已知點,,,請說明其中一個點是另外兩個點的融合點.

2)如圖,點,點是直線上任意一點,點是點,的融合點.

①試確定的關(guān)系式;

②在給定的坐標(biāo)系中,畫出①中的函數(shù)圖象;

③若直線軸于點.當(dāng)為直角三角形時,直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對稱軸和頂點坐標(biāo).

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當(dāng)k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當(dāng)PMN面積最大時,求P點坐標(biāo),并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2

直接寫出y隨x的增大而增大時x的取值范圍;

直接寫出直線l與圖象L2有四個交點時k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圖形ABCD是由兩個二次函數(shù)y1=kx2+mk<0)與y2=ax2+ba>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接寫出這兩個二次函數(shù)的表達式;

(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個頂點在圖形ABCD上),并說明理由;

(3)如圖2,連接BCCD,AD,在坐標(biāo)平面內(nèi),求使得BDCADE相似(其中點C與點E是對應(yīng)頂點)的點E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.

1)該商家購進的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案