【題目】如圖,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長(zhǎng).

【答案】AD=9.

【解析】

連接BE,根據(jù)已知條件先證出BCE=ACD,根據(jù)SAS證出ACD≌△BCE,得出AD=BE,再根據(jù)勾股定理求出AB,然后根據(jù)BAC=CAE=45°,求出BAE=90°,在RtBAE中,根據(jù)AB、AE的值,求出BE,從而得出AD.

如圖,連接BE,

∵∠ACB=DCE=90°,∴∠ACB+ACE=DCE+ACE,

BCE=ACD,

AC=BC,DC=EC,

ACD和BCE中,

,

∴△ACD≌△BCE(SAS),

AD=BE,

AC=BC=6,AB=6 ,

∵∠BAC=CAE=45°,∴∠BAE=90°,

在RtBAE中,AB=6,AE=3,

BE= ===9,

AD=9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是( 。

A. 一個(gè)數(shù)的立方根有兩個(gè),它們互為相反數(shù)B. 負(fù)數(shù)沒(méi)有立方根

C. 如果一個(gè)數(shù)有立方根,那么它一定有平方根D. 一個(gè)數(shù)的立方根的符號(hào)與被開(kāi)方數(shù)的符號(hào)相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階.下圖是其中的甲、乙兩段臺(tái)階路的示意圖.請(qǐng)你用所學(xué)過(guò)的有關(guān)統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)回答下列問(wèn)題:

(1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?

(2)哪段臺(tái)階路走起來(lái)更舒服?為什么?

(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.

圖中的數(shù)字表示每一級(jí)臺(tái)階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s2,數(shù)據(jù)11,15,18,17,10,19的方差s2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),過(guò)點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動(dòng)過(guò)程中,則下列結(jié)論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為
其中正確的結(jié)論有( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)動(dòng)品牌店對(duì)第一季度A、B兩款運(yùn)動(dòng)鞋的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì).兩款運(yùn)動(dòng)鞋的銷(xiāo)售量及總銷(xiāo)售額如圖所示:
(1)一月份B款運(yùn)動(dòng)鞋的銷(xiāo)售量是A款的 ,則一月份B款運(yùn)動(dòng)鞋銷(xiāo)售了多少雙?
(2)第一節(jié)度這兩款運(yùn)動(dòng)鞋的銷(xiāo)售單價(jià)保持不變,求三月份的總銷(xiāo)售額(銷(xiāo)售額=銷(xiāo)售單價(jià)×銷(xiāo)售量);
(3)綜合第一季度的銷(xiāo)售情況,請(qǐng)你對(duì)這兩款運(yùn)動(dòng)鞋的進(jìn)貨、銷(xiāo)售等方面提出一條建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。

1)如圖,在ABC中,AC=BC,∠ACB=90°,直線l過(guò)點(diǎn)C,分別過(guò)A、B兩點(diǎn)作ADl于點(diǎn)D,作BEl于點(diǎn)E.求證:DE=AD+BE.

2)如圖,已知RtABC,∠C=90°.用尺規(guī)作圖法作出ABC的角平分線AD;(不寫(xiě)作法,保留作圖痕跡)

3)若AB=10,CD=3,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出
(1)如圖①,已知△ABC,請(qǐng)畫(huà)出△ABC關(guān)于直線AC對(duì)稱(chēng)的三角形.

(2)問(wèn)題探究
如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長(zhǎng)最?若存在,求出它周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.

(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿(mǎn)足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問(wèn)能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面推理過(guò)程:

如圖,已知∠1=2,B=C,可推得ABCD.理由如下:

∵∠1=2(_____________________)

且∠1=CGD(____________________)

∴∠2=CGD(___________________)

CEBF(_______________________)

∴∠_______=C(兩直線平行,同位角相等)

又∵∠B=C(已知),

∴∠BFD=B

ABCD(____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)如果騎自行車(chē)的平均速度為12km/h,請(qǐng)估算,在租用公共自行車(chē)的市民中,騎車(chē)路程不超過(guò)6km的人數(shù)所占的百分比.

查看答案和解析>>

同步練習(xí)冊(cè)答案