(2013•龍崗區(qū)模擬)如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物線正好經(jīng)過(guò)點(diǎn)O,C,A三點(diǎn).
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作x軸的平行線交拋物線于點(diǎn)M,分別過(guò)點(diǎn)P,點(diǎn)M作x軸的垂線,交x軸于E,F(xiàn)兩點(diǎn),問:四邊形PEFM的周長(zhǎng)是否有最大值?如果有,請(qǐng)求出最值,并寫出解答過(guò)程;如果沒有,請(qǐng)說(shuō)明理由.
(3)如果x軸上有一動(dòng)點(diǎn)H,在拋物線上是否存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可求出C的坐標(biāo)和A的坐標(biāo),又因?yàn)閽佄锞經(jīng)過(guò)原點(diǎn),故設(shè)y=ax2+bx把(2,4),(4,0)代入,求出a和b的值即可求出該拋物線的解析式;
(2)四邊形PEFM的周長(zhǎng)有最大值,設(shè)點(diǎn)P的坐標(biāo)為P(a,-a2+4a)則由拋物線的對(duì)稱性知OE=AF,所以EF=PM=4-2a,PE=MF=-a2+4a,則矩形PEFM的周長(zhǎng)L=2[4-2a+(-a2+4a)]=-2(a-1)2+10,利用函數(shù)的性質(zhì)即可求出四邊形PEFM的周長(zhǎng)的最大值;
(3)在拋物線上存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形,由(1)可求出拋物線的頂點(diǎn)坐標(biāo),過(guò)點(diǎn)C作x軸的平行線,與x軸沒有其它交點(diǎn),過(guò)y=-4作x軸的平行線,與拋物線有兩個(gè)交點(diǎn),這兩個(gè)交點(diǎn)為所求的N點(diǎn)坐標(biāo)所以有-x2+4x=-4,解方程即可求出交點(diǎn)坐標(biāo).
解答:解:(1)因?yàn)镺A=4,AB=2,把△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,
可以確定點(diǎn)C的坐標(biāo)為(2,4);由圖可知點(diǎn)A的坐標(biāo)為(4,0),
又因?yàn)閽佄锞經(jīng)過(guò)原點(diǎn),故設(shè)y=ax2+bx把(2,4),(4,0)代入,
0=16a+4b
4=4a+2b
,
解得
a=-1
b=4

所以拋物線的解析式為y=-x2+4x;

(2)四邊形PEFM的周長(zhǎng)有最大值,理由如下:
由題意,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為P(a,-a2+4a)則由拋物線的對(duì)稱性知OE=AF,
∴EF=PM=4-2a,PE=MF=-a2+4a,
則矩形PEFM的周長(zhǎng)L=2[4-2a+(-a2+4a)]=-2(a-1)2+10,
∴當(dāng)a=1時(shí),矩形PEFM的周長(zhǎng)有最大值,Lmax=10;

(3)在拋物線上存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形,理由如下:
∵y=-x2+4x=-(x-2)2+4可知頂點(diǎn)坐標(biāo)(2,4),
∴知道C點(diǎn)正好是頂點(diǎn)坐標(biāo),知道C點(diǎn)到x軸的距離為4個(gè)單位長(zhǎng)度,
過(guò)點(diǎn)C作x軸的平行線,與x軸沒有其它交點(diǎn),過(guò)y=-4作x軸的平行線,與拋物線有兩個(gè)交點(diǎn),
這兩個(gè)交點(diǎn)為所求的N點(diǎn)坐標(biāo)所以有-x2+4x=-4 解得x1=2+2
2
,x2=2-2
2

∴N點(diǎn)坐標(biāo)為N1(2+2
2
,-4),N2(2-2
2
,-4).
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì)、利用待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的最大值問題和函數(shù)圖象的交點(diǎn)問題,題目的綜合性很強(qiáng),對(duì)學(xué)生的綜合解題能力要求很高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•龍崗區(qū)模擬)為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?那一種方案的提升費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•龍崗區(qū)模擬)下列命題中正確的個(gè)數(shù)是( 。
①連接對(duì)角線相等且互相垂直的四邊形的中點(diǎn),所得到的圖形是正方形
②對(duì)角線相等且互相垂直的四邊形是正方形
③垂直于半徑的直線是圓的切線;
④平分弦的直徑垂直于弦.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•龍崗區(qū)模擬)在矩形ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F,若G是EF的中點(diǎn),則∠BDG的正切值為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•龍崗區(qū)模擬)如圖,四邊形ACDE、BAFG是以△ABC的邊AC、AB為邊向△ABC外所作的正方形.
求證:(1)EB=FC.
(2)EB⊥FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•龍崗區(qū)模擬)為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣A、B兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1560萬(wàn)元.改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬(wàn)元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬(wàn)元.
(1)改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬(wàn)元?
(2)若該縣的A類學(xué)校不超過(guò)9所,則B類學(xué)校至少有多少所?
(3)我市計(jì)劃今年對(duì)該縣A、B兩類學(xué)校共6所進(jìn)行改造,改造資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若今年國(guó)家財(cái)政撥付的改造資金不超過(guò)400萬(wàn)元;地方財(cái)政投入的改造資金不少于75萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改造資金分別為每所10萬(wàn)元和15萬(wàn)元.請(qǐng)你通過(guò)計(jì)算求出有幾種改造方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案