【題目】如圖,在ABC中,BABC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長線于⊙O的切線AF交于點(diǎn)F

1)求證:∠ABC2CAF;

2)若AC2CEEB14,求CE的長.

【答案】1)見解析;(2CE2

【解析】

1)首先連接BD,由AB為直徑,可得∠ADB=90°,又由AF是⊙O的切線,易證得∠CAF=ABD.然后由BA=BC,證得:∠ABC=2CAF;
2)首先連接AE,設(shè)CE=x,由勾股定理可得方程:(22=x2+3x2求得答案.

1)證明:如圖,連接BD

AB為⊙O的直徑,

∴∠ADB90°,

∴∠DAB+ABD90°

AF是⊙O的切線,

∴∠FAB90°,

即∠DAB+CAF90°

∴∠CAF=∠ABD

BABC,∠ADB90°,

∴∠ABC2ABD

∴∠ABC2CAF

2)解:如圖,連接AE,

∴∠AEB90°,

設(shè)CEx,

CEEB14,

EB4xBABC5x,AE3x,

RtACE中,AC2CE2+AE2

即(22x2+3x2,

x2

CE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).對(duì)稱軸為直線,點(diǎn)在拋物線上.

1)如圖1為直線下方拋物線上的一點(diǎn),連接、.當(dāng)的面積最大時(shí),在直線上取一點(diǎn),過軸的垂線,垂足為點(diǎn),連接,.若時(shí),求的值;

2)將拋物線沿軸正方向平移得到新拋物線,經(jīng)過原點(diǎn)軸的另一個(gè)交點(diǎn)為.設(shè)是拋物線上任意一點(diǎn),點(diǎn)在直線上,能否成為以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若能、直接寫出點(diǎn)的坐標(biāo),若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線yx2+mx+m1的頂點(diǎn)為D,交y軸于C點(diǎn),交x軸于A(x10),B(x2,0)兩點(diǎn),點(diǎn)Ay軸左邊,點(diǎn)By軸右邊,且AB4

1)求拋物線的解析式;

2)如圖1APAD交拋物線于P.求點(diǎn)P的坐標(biāo);

3)如圖2,點(diǎn)HB,D之間拋物線上一點(diǎn),直線CHBDE,交x軸于F,若SCDESBEF,求H點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1中, ,點(diǎn)從點(diǎn)出發(fā)以的速度沿折線運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以的速度沿運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為的面積為)關(guān)于的函數(shù)圖象由兩段組成,如圖2所示,有下列結(jié)論:①;②:③圖象段的函數(shù)表達(dá)式為;④面積的最大值為8,其中正確的個(gè)數(shù)有( )個(gè)

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+a+3x+3(a≠0)與x軸交于點(diǎn)A4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)Em,0)(0m4),過點(diǎn)Ex軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過點(diǎn)PPMAB于點(diǎn)M

1)求a的值和直線AB的函數(shù)表達(dá)式;

2)設(shè)△PMN的周長為C1,△AEN的周長為C2,若,求m的值;

3)如圖2,在(2)條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<90°),連接AE′、BE′,求AE′+BE′的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10/斤的某種水果,經(jīng)過兩次降價(jià)后的價(jià)格為8.1/斤,并且兩次降價(jià)的百分率相同.

1)求該種水果每次降價(jià)的百分率;

2)從第一次降價(jià)的第1天算起,第天(為整數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.

時(shí)間(天)

售價(jià)(元/斤)

1次降價(jià)后的價(jià)格

2次降價(jià)后的價(jià)格

銷量(斤)

儲(chǔ)存和損耗費(fèi)用(元)

已知該種水果的進(jìn)價(jià)為4.1/斤,設(shè)銷售該水果第(天)的利潤為(元),求)之間的函數(shù)解析式,并求出第幾天時(shí)銷售利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于 A,B 兩點(diǎn),與 x 軸相交于點(diǎn) C.已知 tanBOC=,點(diǎn) B 的坐標(biāo)為(mn).

1)求反比例函數(shù)的解析式;

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:將函數(shù)C1的圖象繞點(diǎn)P(m,0)旋轉(zhuǎn)180°,得到新的函數(shù)C2的圖象,我們稱函數(shù)C2是函數(shù)C1關(guān)于點(diǎn)P的相關(guān)函數(shù)。例如:當(dāng)m=1時(shí),函數(shù)y=(x-3)2+9關(guān)于點(diǎn)P(1,0)的相關(guān)函數(shù)為y=-(x+1)2-9

1)當(dāng)m=0時(shí),

①一次函數(shù)y=-x+7關(guān)于點(diǎn)P的相關(guān)函數(shù)為_______

②點(diǎn)A(5,-6)在二次函數(shù)y=ax2-2ax+a(a≠0)關(guān)于點(diǎn)P的相關(guān)函數(shù)的圖象上,求a的值;

2)函數(shù)y=(x-2)2+6關(guān)于點(diǎn)P的相關(guān)函數(shù)是y= -(x-10)2-6,則m=_______

3)當(dāng)m-1≤xm+2時(shí),函數(shù)y=x2-6mx+4m2關(guān)于點(diǎn)P(m0)的相關(guān)函數(shù)的最大值為8,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°,點(diǎn)P是△ACD內(nèi)一點(diǎn),連接PAPC、PD,若PA5,PD12,PC13,則ACBD_____

查看答案和解析>>

同步練習(xí)冊(cè)答案