【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC=,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),以相同的速度在線段AC上由C向A運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEF(P、Q、E、F按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH.
(1)求tanA的值;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請?zhí)骄?/span>S是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請說明理由;
(3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請直接寫出t的值.
【答案】(1);(2)存在.S最小值=;(3)t1=;t2=;t3=1,t4=.
【解析】
試題(1)如圖1,過點(diǎn)B作BM⊥AC于點(diǎn)M,利用面積法求得BM的長度,利用勾股定理得到AM的長度,最后由銳角三角函數(shù)的定義進(jìn)行解答;
(2)如圖2,過點(diǎn)P作PN⊥AC于點(diǎn)N.利用(1)中的結(jié)論和勾股定理得到PN2+NQ2=PQ2,所以由正方形的面積公式得到S關(guān)于t的二次函數(shù),利用二次函數(shù)的頂點(diǎn)坐標(biāo)公式和二次函數(shù)圖象的性質(zhì)來求其最值;
(3)需要分類討論:當(dāng)點(diǎn)E在邊HG上、點(diǎn)F在邊HG上、點(diǎn)P邊QH(或點(diǎn)E在QC上)、點(diǎn)F邊C上時(shí)相對(duì)應(yīng)的t的值.
試題解析:解:(1)如圖1,過點(diǎn)B作BM⊥AC于點(diǎn)M,
∵AC=9,S△ABC=,
∴ACBM=,即×9BM=,
解得BM=3.
由勾股定理,得
AM===4,
則tanA==;
(2)存在.
如圖2,過點(diǎn)P作PN⊥AC于點(diǎn)N.
依題意得AP=CQ=5t.
∵tanA=,
∴AN=4t,PN=3t.
∴QN=AC﹣AN﹣CQ=9﹣9t.
根據(jù)勾股定理得到:PN2+NQ2=PQ2,
S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t<).
∵﹣/span>==在t的取值范圍之內(nèi),
∴S最小值===;
(3)
①如圖3,當(dāng)點(diǎn)E在邊HG上時(shí),t1=;
②如圖4,當(dāng)點(diǎn)F在邊HG上時(shí),t2=;
③如圖5,當(dāng)點(diǎn)P邊QH(或點(diǎn)E在QC上)時(shí),t3=1
④如圖6,當(dāng)點(diǎn)F邊C上時(shí),t4=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸交于A,B兩點(diǎn),在射線AO上有一點(diǎn)P,當(dāng)△APB是以AP為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.
填空:線段AD,BE之間的關(guān)系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.
(3)解決問題
如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過點(diǎn)D的切線交BC的延長線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤為400元,B型電腦每臺(tái)的利潤為500元.該商店計(jì)劃再一次性購進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大,最大利潤是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,點(diǎn)A為圓上一點(diǎn)不與C,D點(diǎn)重合,過點(diǎn)A作⊙O的切線,與DC的延長線交于點(diǎn)P,點(diǎn)M為AP上一點(diǎn),連接MC并延長,與⊙O交于點(diǎn)F,E為CF上一點(diǎn),且MA=ME,連接AE并延長,與⊙O于點(diǎn)B,連接BC,AC.
(1)求證:=;
(2)若PCPD=7,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),對(duì)稱軸為直線,平行于軸的直線與拋物線交于、兩點(diǎn),點(diǎn)在對(duì)稱軸左側(cè),.
I.求此拋物線的解析式;
Ⅱ.已知在軸上存在一點(diǎn),使得的周長最小,求點(diǎn)的坐標(biāo);
Ⅲ.若過點(diǎn)的直線將的面積分成2:3兩部分,試求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動(dòng)點(diǎn)D從B出發(fā),沿線段BA運(yùn)動(dòng)到點(diǎn)A為止(不考慮D與B,A重合的情況),運(yùn)動(dòng)速度為2cm/s,過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接BE,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x(s),AE的長為y(cm).
(1)求y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),△BDE的面積S有最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育組為了了解九年級(jí)450名學(xué)生排球墊球的情況,隨機(jī)抽查了九年級(jí)部分學(xué)生進(jìn)行排球墊球測試(單位:個(gè)),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計(jì)圖表:
組別 | 個(gè)數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級(jí)排球墊球測試結(jié)果小于10的人數(shù);
(3)排球墊球測試結(jié)果小于10的為不達(dá)標(biāo),若不達(dá)標(biāo)的5人中有3個(gè)男生,2個(gè)女生,現(xiàn)從這5人中隨機(jī)選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個(gè)男生一個(gè)女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com