【題目】在一次課題學習中活動中,老師提出了如下一個問題:

P是正方形ABCD內(nèi)的一點,過點P畫直線l分別交正方形的兩邊于點M、N,使點P是線段MN的三等分點,這樣的直線能夠畫幾條?

經(jīng)過思考,甲同學給出如下畫法:

如圖1,過點PPEABE,EB上取點M,使EM=2EA,畫直線MPADN,則直線MN就是符合條件的直線l.

根據(jù)以上信息,解決下列問題:

(1)甲同學的畫法是否正確?請說明理由.

(2)在圖1,能否畫出符合題目條件的直線?如果能,請直接在圖1中畫出.

(3)如圖2,A1、C1分別是正方形ABCD的邊ABCD上的三等分點,A1C1AD.當點P在線段A1C1上時,能否畫出符合題目條件的直線?如果能,可以畫出幾條?

(4)如圖3,正方形ABCD邊界上的A1、A2B1、B2C1、C2、D1、D2都是所在邊的三等分點.當點P在正方形ABCD內(nèi)的不同位置時,試討論,符合題目條件的直線l的條數(shù)的情況.

【答案】(1)甲同學的畫法正確,理由見解析;(2)能畫出一個符合題目條件的直線,1;(3)若點P在線段A1C1,能夠畫出符合題目條件的直線無數(shù)條,2(4) 見解析.

【解析】

1)利用MPE∽△MNA中的成比例線段可知EM=2EA,所以MPMN=23,即點P是線段MN的一個三等分點;

2)由(1)中的證明過程可知,在EB上取M1,使EM1=AE,直線M1P就是滿足條件的直線,所以能畫出一條符合題目條件的直線;

3)當點P在線段A1C1上,根據(jù)正方形的性質可知能夠畫出符合題目條件的直線有無數(shù)條;

4)分情況討論.

(1)甲同學的畫法正確.

PEAD,

MPEMNA,

EM=2EA,

MP:MN=2:3,

∴點P是線段MN的一個三等分點;

(2)能畫出一個符合題目條件的直線,在EB上取M1,使EM1=AE,直線M1P就是滿足條件的直線,如圖1

(3)若點P在線段A1C1上,能夠畫出符合題目條件的直線無數(shù)條,如圖2;

(4)若點PA1C1,A2C2B1D1,B2D2上時,可以畫出無數(shù)條符合條件的直線l;

當點P在正方形A0B0C0D0內(nèi)部時,不存在這樣的直線l,使得點P是線段MN的三等分點;

當點P在矩形ABB1D1,CDD2B2A0D0D2D1,B0B1B2C0內(nèi)部時,過點P可畫出兩條符合條件的直線l,使得點P是線段MN的三等分點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DEBC于點E.

(1)試判斷DE與⊙O的位置關系,并說明理由;

(2)過點DDFAB于點F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設他從山腳出發(fā)后所用時間為t(分鐘),所走路程為s(),st之間的函數(shù)關系如圖所示,則下列說法中,錯誤的是(  )

A. 小明中途休息用了20分鐘 B. 小明休息前爬山的速度為每分鐘60

C. 小明在上述過程中所走路程為7 200 D. 小明休息前后爬山的平均速度相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CDAB,且CD2=ADDB,AE平分CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.則下列結論正確的是( 。

A. ①②④ B. ②③④ C. ①②③④ D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,C、Dl2上的兩點,某人在點A處測得∠CAB=90°DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出a,k,b的值及關于x的不等式ax2kx2的解集;

2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;

3)是否存在以P,QA,B為頂點的四邊形是平行四邊形?若存在,請直接寫出PQ的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,ABCD交于點E,點PCD延長線上的一點,AP=AC,且∠B=2P.

(1)求證:PA是⊙O的切線;

(2)PD=,求⊙O的直徑;

(3)在(2)的條件下,若點B等分半圓CD,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠A60°,∠CBM,∠BCN是△ABC的外角,∠CBM,∠BCN的平分線BD,CD交于點D

(1)求∠BDC的度數(shù);

(2)在圖1中,過點DDEBD,垂足為點D,過點BBFDEDC的延長線于點F(如圖2),求證:BF是∠ABC的平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=4.將矩形ABCD繞點C沿順時針方向旋轉90°后,得到矩形FGCE(A、BD的對應點分別為點F、G、E).動點P從點B開始沿BCCE運動到點E后停止,動點Q從點E開始沿EFFG運動到點G后停止,這兩點的運動速度均為每秒1個單位.若點P和點Q同時開始運動,運動時間為x(),△APQ的面積為y,則能夠正確反映yx之間的函數(shù)關系的圖象大致是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案