【題目】下列一元二次方程中,有兩個(gè)不相等實(shí)數(shù)根的是(  )

A.3x25x20B.a2+2a+30C.m24m+40D.y2+40

【答案】A

【解析】

根據(jù)根的判別式逐個(gè)判斷即可.

A.∵△=(5)24×3×(2)=490,

∴此方程有兩個(gè)不相等的實(shí)數(shù)根,故本選項(xiàng)符合題意;

B.∵△=224×1×3=80

∴此方程沒有實(shí)數(shù)根,故本選項(xiàng)不符合題意;

C.∵△=(4)24×1×4=0,

∴此方程有兩個(gè)相等的實(shí)數(shù)根,故本選項(xiàng)不符合題意;

D.∵△=024×1×4=160,

∴此方程沒有實(shí)數(shù)根,故本選項(xiàng)不符合題意.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°OE把∠AOC分成兩個(gè)角,且∠AOE=EOC

1)求∠AOE的度數(shù);

2)將射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)°α360°)到OF

①如圖2,當(dāng)OF平分∠BOE時(shí),求∠DOF的度數(shù);

②若∠AOF=120°時(shí),直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上依次有三點(diǎn)AB、C,且AB=8、BC=16,點(diǎn)P為射線AB上一動(dòng)點(diǎn),將線段AP進(jìn)行翻折得到線段PA’(點(diǎn)A落在直線l上點(diǎn)A’處、線段AP上的所有點(diǎn)與線段PA’上的點(diǎn)對應(yīng))如圖1

(1)若翻折后A’C=2,則翻折前線段AP= ;

(2)若點(diǎn)P在線段BC上運(yùn)動(dòng),點(diǎn)M為線段A’C的中點(diǎn),求線段PM的長度

(3)若點(diǎn)P 在線段BC上運(yùn)動(dòng),點(diǎn)NB’P的中點(diǎn),點(diǎn)M為線段A’C的中點(diǎn),設(shè)AP=x,用x表示A’M+PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F.若BF=12,AB=10,則AE的長為(
A.10
B.12
C.16
D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1是方程x2m0的解,則m________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C至直線l的距離分別為2和3,則此正方形的面積為(
A.5
B.6
C.9
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=120°,∠COD∠AOB內(nèi)部且∠COD=60°,下列說法:

如果∠AOC=∠BOD,則圖中有兩對互補(bǔ)的角;

如果作OE平分∠BOC,則∠AOC=2∠DOE;

如果作OM平分∠AOC,且∠MON=90°,則ON平分∠BOD;

如果在AOB外部分別作AOC、BOD的余角AOP、BOQ,,

其中正確的有(個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式x2-mx+nx-2的乘積中不含x2項(xiàng)和x項(xiàng),試求mn的值,并求這兩個(gè)多項(xiàng)式的乘積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中,點(diǎn)在邊上, , ,垂足分別是、,12.

1平行嗎?為什么?

(2)若∠51°,54°,的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案